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Summary:  Flood management is an important issue in Japan as Japanese rivers are steep in gradient and 
short in length, and some 120 million people populate the river basin densely. The AHP is shown to be a 
valuable technology for aggregating group judgments. Sensitivity measures are developed to determine the 
robustness of the consistency ratio and the principal right eigenvector to perturbations in the group 
judgments of the pairwise comparison matrix. This paper investigates how uncertainty in each of the input 
affects the derived output variables. 

 
1. Introduction 
 
MCDA for flood management is one of the fastest growing areas in operations research, borrowing heavily 
from fields such as hydrology, geology, psychology and computer science. Most flood management 
problems in Japan are participatory processes which inherently involve input from a variety of decision 
makers, whose judgments must be aggregated. In the context of AHP, the aggregation of group judgments 
in discussed (Section 2). Next, sensitivity metrics are proposed to quantify the notion of robustness to 
uncertainty. It is shown that the derived consistency ratio (Section 3) and principal eigenvector (Section 4) 
are insensitive to small perturbation of the consistent pairwise comparison matrix.   

 
2. Aggregation of Individual Judgments and Sensitivity Analysis in AHP 

An important problem in decision analysis involves the combination or aggregation of problem-solving 
knowledge and judgments. In the AHP it is well known that that an m x m pairwise comparison matrix 
requires 

2
)1( −mm  such input judgments. Bolloju (1997) emphasizes the importance of combining or 

aggregating individual judgments into a group score: “Many typical business environments require such 
combination or aggregation of decision making for many reasons such as validation, consistency 
verification, and training. Any technique for elicitation and aggregation of problem-solving knowledge 
should deal with inconsistencies, conflicts, and decision makers' subjectivity.” In the context of AHP, this 
paper uses the geometric mean of individual judgments to obtain a combined group judgment. This may 
help to overcome difficulties arising from a lack of group consensus (Davies, 1994). Other techniques for 
aggregation include “conceptual aggregation” based on conceptual clustering and case-based learning for 
real-time (dynamic) decision making (Chaturvedi et al., 1993); the flexible modeling approach based on 
Bayesian analysis for aggregation of point estimates (Clemen and Winkler, 1993); and aggregation of 
preference patterns using social choice framework (Dubois and Koning, 1994). Comparative studies on 
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group preference aggregation are reported by Ramanathan and Ganesh (1994) and Perez and Barba-
Romero (1995).  

2.1 Mean of Individual Judgments 

In the Tokai flooding problem, three important criteria are considered: flood frequency (criteria 1), water 
velocity (criteria 2), and inundation depth (criteria 3). Consider judgment 12a , the relative importance of 
the flood frequency compared with water velocity. The sample geometric mean of a set 
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12 ,,,, K of judgments from N experts is defined by: 
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In such a way, a “consensus matrix” can be established by aggregating the individual judgments of the N 
decision makers using the geometric mean approach. While the “geometric mean method” is the most 
widely used and theoretically accepted approach in AHP for combining individual judgments to form a 
group opinion, Ramanathan and Ganesh (1994) showed, using counter-examples, that the geometric mean 
method does not always satisfy the Pareto optimality axiom, one of the prominent social choice axioms.   
 
2.2 Variance of Individual Judgments 
 
It is also important to consider a measure of data variability. For illustrative purposes, consider again 
judgment 12a , the relative importance of the flood frequency versus water velocity. An unbiased estimator, 

the sample variance of the judgments, can be established as the mean square deviation of 12a values from 

the geometric mean, >< 12a : 
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Since we are eliciting opinions from a sample of N decision makers from a possibly large population, the 
geometric mean >< 12a  is only an approximation to the "true mean." Because this mean must be 
estimated from available judgments (data), the number of degrees of freedom is reduced by 1, hence the 
factor of 1/(N-1) in the variance. If we have judgments available from the total population of decision 
makers, or if the mean was known a priori, then the factor would be 1/N. Of course the standard deviation 
of judgment 12a is well-known to be ][ 12aσ , the square root of the variance. The standard deviation gives 
a measure of the "spread" of the judgments and can also be used to assign probabilities for being within a 
certain range of values. 
 
Consider now the synthesis of individual judgments for entry 12a , assuming that the judgments of three 
decision makers are as follows: 
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The combined (group) judgment, using the (geometric) mean should be: 
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with corresponding variance: 
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For convenience, assume that we have the following geometric mean values for each entry in the pairwise 
comparison matrix for the Tokai flooding problem, giving rise to a perfectly consistent matrix: 
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Similarly, let us assume the following pairwise comparison matrix of variances: 
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2.3 Sensitivity Metrics 
 
In this section we develop sensitivity metrics to quantify how output variables are affected by uncertainty in 
the group judgments of the pairwise comparison matrix. To obtain the eigenvalue and eigenvectors of a 3 
by 3 matrix, we must solve the problem 
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In the cubic and quartic cases, derived output variables, such the consistency ratio, can be explicitly written 
as a function of the judgments in the pairwise comparison matrix. For example, in the cubic case, Saaty 
(2003) has explicitly derived ),,( 231312 aaafCR =  as follows: 
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where CR, CI, and MRCI(n) are the Consistency Ratio, Consistency Index and Mean Random Consistency 
Index. Similarly, the weights, iw , and the largest eigenvalue, maxλ , are also a function of the input 

judgments, hence ),,( 231312 aaafwi = and ),,( 231312max aaaf=λ . A scenario can be defined as a 
vector of values for the pairwise comparison matrix input judgments, a , where: 

),,( 231312 aaa=a     (10) 
 
For each input, the geometric mean of the group judgments represent the nominal or “base case” value for 
each input. Denote these nominal input values, >< 12a , >< 13a , and >< 23a . Together, these three 
input values specify the nominal scenario: 
 

),,( 231312 ><><><>=< aaaa    (11) 
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It is of interest to note how an output variable, such as the consistency ratio, changes with the value of the 
inputs. The corresponding nominal output variable is defined as: 

 
)( ><=>< afy               (12) 

 
A sensitivity metric, yS , is used to quantify the degree to which each of the group input judgments 

ija contributes to the uncertainty in the output variable y: 
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Note that all of the partial derivatives are evaluated at the nominal (i.e. geometric mean) scenario, >< a . 

These measures can be combined to determine the total sensitivity, T
yS : 
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Morgan and Henrion (1990) refer to the metric in Eq. 13 as a measure of ‘elasticity’, and discuss the use of 
additional related sensitivity metrics. 
 
3. Sensitivity of the Consistency Ratio to Uncertainty in Group Judgments  
 
This section illustrates that the consistency ratio is robust to uncertainty (small perturbations) in the group 
judgments of a 3 by 3 pairwise comparison matrix. Using Eq. 13, the sensitivity in the CR arising from 
uncertainties in judgment 12a is denoted: 
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The factor 
><
><

y
a12 in Eq (14) ensures that this measure of uncertainty is unaffected by the unit of 

measurement of both the input and output variables. Similar measures can be defined for the two remaining 

group judgments 13a  and 23a . As shown in Figures 1 through 3 T
CRS  should be relatively small because 

the individual sensitivities )( 13aSCR , )( 12aSCR , and )( 23aSCR are shown to be small, when the 
consistency ratio is the output variable. However, a drawback of this approach is that it does not consider 
the degree of variation in each input. A group input judgment that has a small sensitivity, but a large 
variation about its nominal value (due to uncertainty and perhaps disagreements among decision makers in 
the group) may lead to significant variation in the derived consistency ratio and eigenvector. 
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Figure 1. )( 13aSCR as a function of a) 13a and 23a  and b) 12a and 13a  

                                                      
            (a)                (b)  

Figure 2. )( 12aSCR as a function of a) 12a and 23a  and b) 12a and 13a  
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Figure 3. )( 23aSCR as a function of a) 13a and 23a  and b) 12a and 23a  
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3.1 Gaussian Approximation to measure the variance of the consistency ratio 
 
The Taylor series expansion provides a way to express deviations of an output y  from nominal values,  

><− yy , in terms of deviations of inputs from their nominal values: ><− ijij aa .  Successive terms 

of the Taylor series contain higher order powers of deviations and higher order derivatives of the function 
with respect to each input. If the deviations ><− ijij aa are relatively small, then higher powers will 

become very small. And if the output function is relatively smooth in the region of >< a , the higher 
derivatives will also be small and hence higher order terms can be safely ignored. Under these conditions, 
the Taylor series produces a good approximation. For example, consider an approximation for the variance 
of y  assuming independence of the 1312 , aa , and 23a input judgments, using only Taylor series terms up 
to the second order: 

><><><><><><
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

≈
aaaaaa 2323

23
1313

13
1212

12 )var()var()var()var(
a
y

a
y

a
a
y

a
y

a
a
y

a
y

ay (15) 

 
From Eq. 15 one can see that if the input judgments are independent, then the variance of the output is 
approximately the sum of squares of the products of the standard deviation, )( ijaσ , and the sensitivity 
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This implies that the variance of the output is given by a Gaussian approximation, where total uncertainty 
in the output, expressed as variance, is explicitly decomposed as the sum of uncertainty contributions from 
the input. We can prove that every pair of input judgments, for example 12a  and 23a are independent by 

showing that their covariance is zero. The covariance of two elements 12a  and 23a is defined by: 
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where ><= 1212 aµ  and ><= 2323 aµ  are the means of 12a  and 23a , respectively. Now, it is true 
that for any two distinct judgments in a pairwise comparison matrix, the geometric mean of the product of 
two judgments is equal to the product of their geometric means. For example: 

>><<=>< 23122312 aaaa    (18) 

It follows that for a 3x3 matrix 0),cov( 2312 =aa , 0),cov( 1323 =aa , and 0),cov( 1312 =aa . Finally, 
the covariance of two identical judgments can be expressed as the variance of a single judgment. For 
example, the covariance between judgment 13a  and itself becomes: 
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Fig 4. Variance of the Consistency Ratio, )var(CR , as a function of )var( 12a  and )var( 13a  

 
The relationship between variations in the inputs, )var( 12a and )var( 13a , and variations in the output,  

)var(CR , is given in Figure 4 where it is assumed, for illustrative purposes, that )var( 23a =1 and 

1.0)( 23 =aSCR  
 
4. Sensitivity of Criteria Weights to Perturbations in Input Judgments 
 
Assume that the pairwise comparisons in Figure 5 are obtained by taking the geometric mean and variance 
of the group judgments. Note that in Figure 5 there are three criteria: flood frequency (criteria A), flood 
velocity (criteria B), and flood depth (criteria C). 
 

 
 

Fig 5. Consistent Matrix for the Flooding Criteria: Frequency, Velocity, and Depth 
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The weights of criteria A (frequency), B (velocity), and C (depth) are denoted as wA, wB, and wc. Using the 
sensitivity notation developed earlier, for group input 12a the sensitivity in wA would be: 

><
><

∂
∂

=
>< A

A
w w

a
a
w

aS
A

12

12
12 )(

a

    (20) 

The flooding criteria (wA) should also be examined for sensitivity to changes in group inputs 13a and 23a : 
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We next investigate how uncertainty in the aggregated judgment 23a affects the sensitivity of the flooding, 
velocity, and depth criteria. This is illustrated in Figures 6 through 8 respectively. Note that in Figure 7 the 
sensitivity metric: 

 
                             (22) 
 
   

 
is used because we are considering the sensitivity of the velocity criteria (criteria B). Finally, Figure 8 
considers the sensitivity of depth criteria (criteria C) to uncertainties in judgment 23a and hence uses the 
metric: 

 
                                      (23) 
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Figure 6. )( 23aS
Aw as a function of a) 13a and 23a  and b) 12a and 23a  
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Figure 7. )( 23aS
Bw as a function of a) 13a and 23a  and b) 12a and 23a  
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Figure 8. )( 23aS
Cw  as a function of a) 13a and 23a  and b) 12a and 23a  

 
Note that: 
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Hence, we can conclude that the ‘weight’ of the depth criteria (wc) is most affected by uncertainties in the 
group judgment 23a . Also, from Eq. 24 we can conclude that the weight of the velocity criteria (wB) is 

more sensitive to uncertainties in 23a  than is the depth criteria (wc). 
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