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Summary:  Various kinds of pairwise comparison judgment matrixes are the basic components in the 
Analytic Hierarchy Process (AHP) Frame for multicriteria decision making. This paper provides the 
concepts of rank equivalent classes and order stable structure of the positive reciprocal judgment 
matrix in AHP. It is shown that the appropriate order stability structure of judgment matrix is a basic 
and important condition in decision judgment and analysis process to preserve the reliability of priority 
order ranking derived from the judgment matrix. And also, in this paper, a simple method to detect the 
unstable order structure of matrix is presented.  

 
 

1. Introduction 
 

The analytic hierarchy process (AHP) introduced by T.L. Saaty is a well-known and popular analytic 
model of multi-criteria decision making. The final object of AHP is the priority ordering of the decision 
alternatives, however, the first and basic concern in AHP is to obtain a rank ordering of the priority 
vector from the positive reciprocal judgment matrix under a single criterion. We look on each column 
vectors expressed in the judgment matrix as one time of judgment by decision maker and also one 
element in positive vector space. Due to a lot of uncertain factors and perturbations, the n column 
vectors in the matrix are absolutely not consistent. So, people have to look for the column vectors in the 
matrix is a “ close” structure to compose a close consistent matrix. The “ close” here means the “order 
clustering” that all column vectors of a judgment matrix have a same (or near same) rank ordering 
sequence. 
 
Let us suppose that an n by n pairwise comparison judgment matrix A=( aij ) in AHP is positive 
reciprocal, i.e. matrix A holds aij =1/ a ji , aij >0. It is consistent if ijkjik aaa = , i, j, k? (1, 2, … , n-1 
). A lot of works  respect to the issue of the near consistent level of a judgment matrix have been done. 
Saaty and Vargas (1982, 1988, 1995) discussed the test standard of consistency (consistency ratio, 
CR=( λmax -n) / (n-1); Random Consistency Index RI ) and suggested the near consistency level to be : 
CI/RI= 10%  (5% and 8% only for three and four alternatives). However, it is clear that a decision 
making process heavily depends on the rank ordering of the judgment for alternatives, associated with 
inconsistency, the inverse ranking inconsistency is a troublesome problem. One aspect of the problem is 
how serious the priority ordering of judgments was distorted. In recent years, Aguaro n (2000) [1], 
Hurley (2001) [2], Lipovetsky (2002) [3] and Saaty (2003) [4] have studied and presented some methods to 
detect the distorted entries and to look for new one instead in order to improve the consistency of 
judgment matrix. Although all of those works are effective, from the view of rank order structure of 
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judgment matrixes, these approaches do not catch the fancy of the favorable rank ordering for the 
judgment matrix completely. 
 
For examples, let A and B be 3×3 and 4×4 positive reciprocal pairwise comparison judgment matrixes. 
The estimated results of priority vectors with rank order numbers of A and B are in table1 and 2 by 
using the eigenvector method (EM), the normalization of row average (NRA), the least squares method 
(LSM) and the logarithmic least square method (LLSM) on the matrix A and B respectively. 
 
Table 1: Different priority vectors and rank order of matrix A 

A A1 A2 A3 EM NRA LSM LLSM 

A1 1 1/4 1/3 0.1261 (1) 0.1253 (1) 0.1258 (1) 0.1291 (1) 

A2 4 1 4/5 0.4254 (2) 0.4591 (3) 0.4025 (2) 0.4355 (2.5) 

A3 3 5/4 1 0.4485 (3) 0.4156 (2) 0.4717 (3) 0.4355 (2.5) 

 
maxλ =3.0291,  C R = 0.028 < 5% 

 
Table 2: Priority vectors and rank order estimate by using various methods for matrix B 

B B1 B2 B3 B4 EM NRA LSM LLSM 

B1 1 1/2 1/4 3/2 0.1499 (2) 0.1592 (2) 0.1346 (1) 0.1493 (2) 

B2 2 1 1 3 0.3432 (3) 0.3429 (3) 0.3642 (4) 0.3550 (3.5) 

B3 4 1 1 3/2 0.3635 (4) 0.3673 (4) 0.3538 (3) 0.3550 (3.5) 

B4 2/3 1/3 2/3 1 0.1434 (1) 0.1306 (1) 0.1475 (2) 0.1407 (1) 

 
maxλ  =4.1885,  C R = 0.069 < 8%  

 
Note: in table 1 and 2, the order number of every element in the priority vectors is given in parentheses, 
and the elements with same rank in a priority vector are marked with an average order value of their 
rank numbers. Especially note: the order numbers in the tables are just presented as marks of rank 
orderings, which do not reflect intensity priority ratios between two adjacent elements in vector or two 
adjacent ranked alternatives. 
 
According to the consistency ratio C.R., obviously, the consistency levels of matrixes A and B are 
accepted. But their rank orderings of the different priority vectors estimated by methods are not same, 
especially some ranks of alternatives are reversed. Which priority vector among them is decision maker 
look for? As Professor Saaty suggested, the principal eigenvector calculated by EM is necessary for 
representing the priorities derived from the near consistent judgment matrices 
 
 
2. Order Structure of Judgment Matrix  
 
An important basic aspect of AHP is the estimation of the priority rank ordering of the alternatives from 
the judgment matrix. The general form of a judgment matrix is a positive reciprocal square matrix, 
which contains n un-normalized column vectors. In order to represent the decision maker’s ordinal 
perception faithfully, let us consider the strict preference order relations such as A1 f A2 f…A i f…
f A n and the same (or indifferent ) preference order such as Ak˜ A k+1,  k? (1, 2, … , n-1 )  for the set 
of alternatives {A1 , A2, … A i, …, A n }.  One column vector of a judgment matrix A=( aij ) is regarded 
as one time of judgment with the different unitage alternative Ai, i? (1, 2, … , n ) . 
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We assume that any column vector aj of a judgment matrix is an element of the vector space Rn

+ , where 
Rn

+ ={ aj = (a1j, a2j, … , anj )T | aij >0,  i, j ? (1, 2, …, n ) }. Then, a strict preference order Ai f Aj holds 
aij >1 and same preference order A i˜ A j holds aij =1 in the matrix A aij= ( ) .Sometimes, we concisely 
use the natural number sequence to symbolize the strict rank orderings, and use the average order value 
of their rank numbers to characterize the same rank positions, such as presented in table1 and 2. 
 
It is easy to know that each column vector of the judgment matrix can described as once judgment and a 
vector a j  ? Rn

+ . Obviously, with any α ?
+
1R , two vectors of a j and α a j   present a same priority 

ordering, in other words, α a j   does hold not only the same rank ordering but also the same strength 
ratio for compared alternatives in despite of any different α ?

+
1R . Specially, it is easy to understand 

that all of the column vectors in a judgment matrix can be expressed as one vector with different 
coefficient α >0 if and only if the matrix is consistent. It is also true that all of column vectors in a 
consistent matrix indicate same priority rank ordering and intensity ratio for decision alternatives. 
 
Definition 1. Any column vectors of matrix A aij= ( ) , such as column vectors a a Ri j n, ∈ + , have same 
priority rank order if for each k, l ? (1, 2, … , n ), liki aa >  and ljkj aa >  or liki aa ≈  and ljkj aa ≈ , 
that means they have equivalence order relation EO, denoted by ai EO a j . 
For example: 2a EO 3a  in table 1. 
 
Theorem 1. EO is a binary relation of Rn

+ . It is also a rank equivalence relation that determines unique 
rank equivalent class of Rn

+ . 
 
Proof. See [5]. 
 
Definition 2. A rank equivalent class with k rank positions in same order position is called a (n-k-1) -
dim rank equivalent class. The dimension of a strict rank equivalent class in Rn

+  is n. 
 
Theorem 2. The vector space Rn

+  holds n! strict rank equivalent classes. Each one of strict rank 
equivalent classes adjoins (n-1) side rank equivalent classes in which only one couple rank positions 
holds same rank order, (n-2) side rank equivalent classes with only three same rank positions, (n-k) side 
rank equivalent classes with (k+1) same rank positions, and so on. 
 
Proof. Firstly, let us show the amount of the strict rank equivalent classes in Rn

+ . Given a strict rank 
equivalent class as a set of vectors of Rn

+ , without loss of generality, it represents A1 f A2 f…A k f
…f A n and denoted by the natural number sequence (1, 2, … , n )T. Hence, its amount is equal to the 
number of maps of itself, so that “1” position has n images of the maps, “2” position has (n-1) images, 
“3” has (n-2) images, and so on. Therefore, the amount of these strict rank order classes in Rn

+ is n!. 
Secondly, let us fix the rank ordering of a certain strict rank equivalent class and consider the same 
positions as one rank position, it is easy to show that the amount of this side rank equivalent classes with 
two same rank positions is (n-1), the side equivalent classes with three same rank is (n-2), and so on. 
Especially, there exists only one side rank equivalent class in which whole rank positions are with same 
order number in Rn

+ . And obviously, any vector of Rn
+  must belong in one rank equivalent class. 

 
Definition 3.  Based on one rank equivalent class, its neighbor rank equivalent class is obtained by 
exchanging only one couple of connecting order positions. Its side rank equivalent class is obtained by 
extending the same order positions without changing its other rank orderings, and all of its side rank 
equivalent classes construct its bound rank equivalent class. 
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Theorem 3. A certain strict rank equivalent class represented alternative ordering as A1 f A2 f… A k 
f…f A n is a n-dim rank equivalent class, which has 12 −n of side equivalent classes to be composed its 
bound equivalent class in Rn

+ . 
 
Proof. By similar way of the proof for theorem 2, the result of theorem 3 is obvious.  
 
For instance, based on strict rank equivalent class associated with A1 f A2 f…A k f…f A n.  It is a 
n-dim rank equivalent class denoted by (1, 2, … , n ). Its bound rank equivalent class includes all of its 
side rank equivalent class, that is, the (n-1) of (n-1)-dim side rank equivalent classes with two same rank 
positions, (n-2) of (n-2)-dim side equivalent classes with three same rank positions, and so on. The total 
number of side equivalent class in a bound class is equal to 12 −n . A strict rank equivalent class has (n-1) 
neighbor rank equivalent classes. 
 
It is easy to imagine that any rank equivalent class in Rn

+  is a cone. Moreover, we will prove later that 
it is also a convex cone. A certain rank equivalent class and its bound equivalent class together compose 
a convex cone too in Rn

+ , called quasi-close rank equivalent class. This is an important region specially 
which is constructed with a strict rank equivalent class. 
 
Definition 4. A quasi-close rank equivalent class is a set of this rank equivalent class with its bound 
equivalent class together. 
 
An illustrative example, let n=2, the 

+
2R  space is a plane divided into three rank equivalent classes by 

the 450 line. All vectors above the 450 line in the plane belong into one rank equivalent class represented 
A1 f A2, all vectors below the 450 line belong into another rank equivalent class represented A2 f A1 , 

and the 450 line represented A1˜ A2 is only one side rank equivalent class which composes a bound 
class both of previous equivalent classes. 
 
Theorem 4. Any rank equivalent class in the vector space Rn

+  is a convex cone.  
 
Proof.  Actually, according to the definition of convex cone that a cone is a convex cone if and only if 

Kxx ∈+ 2211 λλ  whenever Kx ∈1 , Kx ∈2 , 1λ >0 and 2λ >0. The first is obvious that each rank 
equivalent class K  of Rn

+  is a cone. And second, by the definition2 in the paper, since for any vector 

1x  and 2x ? K , if 11 lk xx ≥  and 22 lk xx ≥ , k, l ?  (1, 2, …, n ), the sum vector 2211 xx λλ +  has 

22112211 llkk xxxx λλλλ +≥+  for any 1λ >0, 2λ >0, so the sum vector must belong to the same rank 
equivalent class K . It means that any rank equivalent class K +⊆ nR  is a convex cone. 
 
Naturally, the results of theorem 4 can be extended such to any linear combination of vectors in a rank 
equivalent class. Based on this conclusion and the knowledge of linear space structure, we have a 
corollary for judgment matrix as follows.  

 

Corollary 1. All independent column vectors of a judgment matrix compose a convex cone in Rn
+ . 

 
 
3. Order Stability Region of Judgment Matrix 
 
In fact, Analytic Hierarchy Process (AHP) provides a well-known cognitive control mode to help people 
make complex decisions. It also allows for inconsistency of judgment matrix since there are many 
uncertain factors and perturbations in making judgments. No matter how precise it is, as Saaty said [4], 
if one insists on consistency, people would be required to be like robots, but if no rule to aid complex 
judgments, people would arbitrarily change their minds to be like drunkards. In order to find some 
useful guidelines embedded in the frame of analytic hierarchy process to support people endeavor, in this 
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section, we will analyze the stable structure of judgment matrixes and find the stable region for decision 
alternatives in this section.  
 
Definition 5. The order structure of a judgment matrix is said to be stable if any no-negative linear 
combinations of all column vectors of this judgment matrix keeps same rank order for decision 
alternatives. 
 
One column vector of the judgment matrix exhibits once judgment. If the matrix order structure is 
stable, then how big weight put on some of column vectors of the matrix is unable to change the rank 
ordering of the final priority order for alternatives under a single criterion 
 
It is clear that the order structure of a consistent judgment matrix is stable since all column vectors of 
this kind of judgment matrix belong to one ray in a positive vector phase. 

 
Theorem 5. A sufficient condition for stable order structure of judgment matrix is that all of its column 
vectors belong to one rank equivalent class in the vector space Rn

+  
 
Proof.  As mentioned above, since a rank equivalent class is a convex cone, any one of the no-negative 
linear combinations of those column vectors must be in this rank equivalent class if all column vectors of 
judgment matrix are in this rank equivalent class. Therefore, the combination of column vectors, as a 
priority vector estimated from the judgment matrix, must also belongs to the same rank equivalent class. 
Actually the combination vector keeps same rank ordering as the column vectors hold. This kind of 
matrix is order structure stable. 
 
More detail, supposing combinations nnjj aaaa λλλλ +⋅⋅⋅+⋅⋅⋅++ 2211  where ja  is a column 

vector of the judgment matrix, jλ = 0,  j?  (1, 2, … , n ). Supposing all of column vector ja  are in one 

rank equivalent class, that is all vectors have same priority rank ordering for alternatives, i.e., for any 
index k and l and any column vector of matrix, let a j  and 1+ja , if ljkj aa ≥  then 11 ++ ≥ ljkj aa , k, l ?  

(1, 2, …, n ),  so we have the combination ∑∑
==

≥
n

j
ljj

n

j
kjj aa

11

λλ  k, l ?  (1, 2, …, n )  belongs to a 

same rank equivalent class. 
 
According to the definition 5, we have more corollary as follows. 
 
Corollary 2. (1) The order structure of a positive reciprocal judgment matrix is strict stable if all of its 
column vectors belong to one strict rank equivalent class of Rn

+  
                     (2) The order structure of a positive reciprocal judgment matrix is critical stable if all of its 
column vectors are in a side rank equivalent class of Rn

+  
(3) The order structure of a positive reciprocal judgment matrix is stable if all of its column 

vectors are in a quasi-close rank equivalent class of Rn
+  

(4) The order structure of a positive reciprocal judgment matrix is asymptotically stable if 
its dimension of the matrix is adequate and all of its column vectors are distributed in the region of a 
rank equivalent class with its adjoining classes. 
 
 
4.  Stability Analysis Based On Examples  
 
With regard to stability analysis of the judgment matrix, the first task is to identify the components of 
the rank equivalent classes of the matrix and determine the validity of its order stable structure. If the 
order structure is not accepted, we need to deal with the relationship between changes in the judgment 
vectors, and arrange the rank reversal of the alternatives. 



Proceedings – 7th ISAHP 2003 Bali, Indonesia 492 

 

Now, let consider the example of judgment matrix A, its three column vectors represent A3 f A2 f A1 

and A2 f A3 f A1 in the two strict rank equivalent classes. Both classes adjoin each other. So, the order 
structure of matrix A is unstable due to n=3 and it will be better to ask decision maker to judge it. 
 
By using similar way, the four column vectors of matrix B are in the three different rank equivalent 
classes, ? B3 f B2 f B1 f B 4, ?  B3˜ B2 f B1 f B 4 and ?  B2 f B3˜ B1 f B 4 respectively. The second 
class is the first one’s side rank equivalent class, and also the second class is the side class between the 
first class and first one’s neighbor rank equivalent class (B2 f B3 f B1 f B 4). Specially, the third class is 
the side class of the first one’s neighbor rank equivalent class, but it is broke away by a strict class. So, it 
is so far from the region of the most of the rank classes that the judgment matrix holds. Consequently, 
the order structure of matrix B is also unstable and it is necessary to ask the decision maker to change 
his mind, first to third one. 
 
In practice, the rank order numbers of vectors provide a useful way to help people to determine whether 
or not the order structure stability of judgment matrix is satisfied. For example, the rank order numbers 
of the column vectors in matrix A and B are presented as follows: 

 

A: 
1 1 1
3 2 2
2 3 3











    B: 

2 2 2 2 5
3 35 35 4
4 35 35 2 5
1 1 1 1

.
. .
. . .

















 

 
 
5. Conclusion And Future Research 
 
In this paper, we have discussed the concepts of rank order equivalent class, configurations of rank 
equivalent classes in vector space and stability structures of judgment matrix. Using these concepts, we 
can analyses the order structure of judgment matrixes, change the rank reversal in the judgments and 
improve the validity of the priority vector for decision alternatives. The satisfactory order structure of a 
judgment matrix is an essential condition to preserve the rank ordering of solution in AHP. The 
analyzing process and methods as we mentioned above are convenient, simple and useful to estimate a 
priority rank ordering to the best of the decision maker’s mind for multi-criteria decision making 
problems. 
 
However, one substantial effort that we did not consider in this paper is that the rationality of rank order 
structure of people’s judgments and expressions in positive vector space. And also, human error and 
various uncertain perturbations may exist in each facet of analysis process. Analytic Hierarchy Process 
provides a very helpful cognitive control mode to implement and preserve quality of solutions of multi-
criteria decision making, but complexity of real cognitive situation is a truly very large problem. We 
have not solved it. Hopefully, we have set forth a good start for solution in this field. 
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