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Summary:  In the general theory of flow and potential, flow is induced by potential difference, and 
it is shown that pairwise comparison flow is also induced by priority weight potential difference in 
the logarithmic least squares estimation(LLSE) of node priority weight of a pairwise comparison 
design graph. While in the electrical circuit network, Kirchhoff’s Current Law(KCL) holds on a 
cutset basis, Kirchhoff’s Voltage Law(KVL) holds on a tieset basis, and Ohm’s Law holds on a link 
basis, but in the LLSE of pairwise comparison design graph, the conservation law of pairwise 
comparison flow(KCL-like plus Ohm-like law) holds on a cutset basis. Using this law(or set of 
equations) systematically, topological formulae for the expression of priority weight potential are 
given for some design graphs. 

 
 

1. Introduction 
 In the general theory of flow and potential, flow is induced by potential difference, and this paper 
shows that pairwise comparison flow is also induced by priority weight potential difference in the 
logarithmic least squares estimation(LLSE) of node priority weight of a pairwise comparison design 
graph. 
 Rest of the paper consists as follows. 
 
Chapter2: LLSE of node priority weight 
Chapter3: Optimality condition of LLSE 
Chapter4: Flow and potential in LLSE 
Chapter5: Examples 
Chapter6: Topological formula 
Chapter7: Conclusion 
 
2. LLSE of node priority weight 
 
2.1 Pairwise comparison design graph 
 
 We will introduce pairwise comparison design graph G(V, E) to express what pairwise comparison 
is made among the items. The graph G (V, E) is a directed-edge graph, V is the vertex set, and E is 
the edge set. An item to be evaluated corresponds to a vertex, and if there is an edge between two 
vertexes, then it means that a pairwise comparison measurement took place between the two items. 
Multiple edges are allowed between two vertexes. 
 
2.2 Ratio model and its logarithmic linear model 
 We assume two ratio models (1) and (2) for the pairwise comparison measurement between item i  
and item j . 
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Here, a directed edge ( ji, ) originates at vertex i  and terminates at vertex j . If we take the 
logarithm of both sides in (1) and (2), then the logarithmic linear models (2) and (3) are obtained. 
 
      ijjiijij uu εα +−=R         ( ) Ε∈ji,         (3) 

   ( ) ijijjiij uu εα +−= G     ( ) Ε∈ji,     (4) 

Here, ( ji, ) is an edge connecting item i  and item j , ija  is pairwise comparison measurement 

value when item i  is compared how many times more important than item j ( ija  is simply called 

measurement ( ji, )), ix  is the weight of item i , ije  is the error multiplier accompanied with 

measurement ( ji, ), ijR  is the tendency of overestimation or underestimation accompanied with 

measurement ( ji, ), ijG  is also the tendency of overestimation or underestimation accompanied 

with measurement (where 1GR −≈ ijij ), ,log  ,log  ,log ijijiiijij exua === εα  and so on. 

Hereafter ija  is simply called measurement ( ji, ), and if multiple measurements are allowed on 
the same edge ( ji, ), the third index would be needed to distinguish the measurements done on the 
same edge ( ji, ), such as by ( ji, ;1), ( ji, ;2), and ( ji, ;3). But for the simplicity of notation the 
third index will be neglected. 
 Notice that (1) and (2) are not linear in x , but (3) and (4) are linear in α  and u , given R  and 
G . 
 
3. Optimality condition of LLSE 
 
3.1 Formulation of LLSE 
 The problem of estimating the priority weight vector of items { }iuu =  so as to minimize the sum 
of logarithmic errors is mathematically formulated as  
 
     minimize   ( ) ( )∑= 2

iju εΖ         (5) 

     subject to    Κ=∑ iu             (6) 

, where the summation ∑ in (5) is taken over ( ) Ε∈ji, , and Κ is an appropriate constant. 
 
3.2 Optimality condition 
 Since the LLSE problem ((5) and (6)) is an equality-constrained minimization problem, its 
necessary condition for the optimality is obtained by differentiating the Lagrange function L ( λ,u ) 
with respect to u andλ  and putting each of them at zero. 
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The set of equations (8) and (9) is the optimality condition for the LLSE. Then, the following 
theorems hold. 
 
〔Theorem 1〕 
The Lagrange multiplierλ  for the constraint (6) is 0 both in Model (1) and model (2).    ▢ 
〔Proof〕 First, we consider the case of Model (1). 
 
Since it holds that   
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 ( V∈i ), summing up (10) for each V∈i  and putting it at zero, 

we get  0 =λΝ .  Here,  ( ) ( ){ } ( ) ( ){ }.,  ,,  ,V ΕΟΕΤΝ ∈=∈== ikkikiki  
 
Notice that the term corresponding to some specific edge ( ml, ) appears twice, once in the first term 
of any equation and the second time in the second term of another equation with different signs, thus 
canceling each other. Next, we consider the case of Model (2). Instead of (10), we have (11). 
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The same argument goes and finally it holds that 0 =λΝ . (Q.E.D.) 
〔Theorem 2〕 
In Model (1), the following inflow = outflow conservation-like law holds. 
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Assuming the reciprocity, ( 1 =⋅ jiij aa ), it can be expressed in an undirected-edge manner by (13). 
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Here, ( ) ( ) ( ){ }ΕΕΑ ∈∈= ikkiki ,or    , 　 .  ▢ 

〔Proof〕 Since 0=λ  in (10), (12) is directly induced. (Q.E.D.) 
 Note that a simple formula like (13) does not hold in Model (2). So Model (1) is preferred to Model 
(2) also from the viewpoint of theoretical beauty. 
 
4. Flow and potential in LLSE 
 
 In resistor electrical networks, the Ohm’s Law holds on an edge, such as RI＝V, Kirchhoff’s 
Current Law (KCL) holds on a cutset, and Kirchhoff’s Voltage Law (KVL) holds on a tieset. In 
LLSE of pairwise comparison graph, what kind of laws will hold and will not hold? 
 
4.1 KVL 
 In an electrical network, KVL says that edge voltage integrated along any loop (tieset) is zero. 



Since variable iu  is assigned to each node and its difference ( ji uu − ) appears in its error model 

(3), consider it as its potential. Then, ( ji uu − ) is the potential difference between nodes i  and j , 
and can be called “voltage”. Since the potential is assigned to each node and their difference between 
nodes can be considered voltage, a KVL-like law naturally holds in our LLSE of pairwise 
comparison graph. 
 
4.2 Ohm’s Law + KCL 
 Equation (13) can be interpreted as a combination of Ohm’s Law and KCL. Since ikα  is the 
logarithm of pairwise measurement ( ki, ), it can be interpreted as the evaluation flow oriented from 
node i  to node k . The left hand side of (13) or (12) is summation of all the evaluation flows 
coming to and going from node i , and the right hand side of (13) or (12) is the summation of 
potential difference. If Eq. (13) holds on an edge basis, it is Ohm’s Law, but Eq.(13) does hold on a 
node basis. Therefore, Theorem 2 can be extended to Theorem 3. 
〔Theorem 3〕  
In Model (1), inflow＝outflow conservation-like law holds at any cutest C. 
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5. Examples 
 We have shown the concept of evaluation flow and evaluation potential in Chapter 4 and we will 
explain them through examples in this chapter. 
〔Example 1：Model (1) with 1R =ij 〕 
Consider a design graph of Fig.1, where there are 4 items and 5 pairwise comparison measurements 
take place. They are measurements (1,2), (2,3), (1,3), (1,4) and (3,4);  
 

1R    ,6  ,5  ,2  ,2  ,1 3414132312 ====== ijandaaaaa   for all ( ) Ε∈sji ', . 
 
 
                         2      
          112 =a                  223 =a  

                      213 =a  
          1                             3 
          
         514 =a                  634 =a  
                         4 
                         
  Fig.1  Four-node five-edge design graph for example 1 
 
LLSE solutions are:  
   2561.0  ,1067.1  ,9839.1  ,7783.1 4321 ==== xxxx  

   . 5915.0  ,044.0  ,2975.0  ,25.0u 4321 −==== uuu  
 
Here, 321   ,  , uuu , and 4u  are interpreted as evaluation potentials and they are shown on the 

undirected-edge version of the design graph (Fig. 2), together with evaluations flows 0.012 =α , 
778.0    ,69897.0  ,301.0  ,301.0 34142313 ==== αααα and . 



 
 
                          2975.02 =u  
                         2      
          012 =a                  301.023 =a  
                       
                    301.013 =a  

 25.01 =u  1                               3   044.03 =u  
 
   69897.014 =a                      778.034 =a  
                         4 
                     5915.04 −=u   
    Fig.2  Flows and potentials for Example 1 
 
 First, consider a cutest ( ) ( ) ( ){ }4 ,1 ,3 ,1 ,2 ,11 =c , the set of edges connecting vertex 1 and the 
other vertexes. The sum of evaluation flows through 1c  is 141312 ααα ++ , which is 1.0, and the 

sum of evaluation potential differences at 1c  is ( ) ( ) ( )413121 uuuuuu −+−+− , which is also 

1.0. Therefore, Theorem 2 and Theorem 3 are confirmed to hold for the cutest 1c  in Example 1. 
 Next, consider a cutest ( ) ( ) ( ){ }3 ,4 ,3 ,1 ,2 ,12 =c , the set of edges connecting vertex set {1, 4} 
and vertex set {2, 3}. The sum of evaluation flows through 2c  is 341312 ααα −+ , which is 

–0.477, and the sum of evaluation potential differences at 2c  is ( ) ( ) ( )343121 uuuuuu −+−+− , 

which is also –0.477. Therefore, Theorem 3 is confirmed to hold also for the cutest 2c  in Example 
1. 
〔Example 2: Model (1) with different sij 'R 〕 
 Consider a design graph shown in Fig.3, where measurement values are the same as in Example 1, 
but sij 'R  are not all equal to 1; 

   2.R  ,1R  ,2R  ,1R  ,1R 3414132312 =====  
 
 
             112 =a      2     223 =a  

          1R12 =                  1R 23 =  

                      213 =a  
          1                             3 
                      2R13 =  

     514 =a , 1R14 =             634 =a , 2R 34 =  
                         4 
                         
   Fig.3  Four-node five-edge design graph for Example 2 
 
LLSE solutions are: 
  1308.0  ,4565.1  ,482.2  ,1147.2 4321 ==== xxxx  

   . 8833.0  ,1633.0  ,3948.0  ,3252.0u 4321 −==== uuu  



 
 Evaluation potentials 321   ,  , uuu , and 4u , and evaluation flows 14231312  , , , αααα  and 34α , 
are shown on the undirected-edge version of the design graph (Fig.4), together with resistance values 

14231312 R ,R ,R ,R  and 34R . 
 
           
                          3948.02 =u  
                         2      
    012 =a , 1R12 =                 301.023 =a  

                                      1R 23 =  

   3252.01 =u    301.013 =a , 2R13 =  

          1                               3   1633.03 =u  
                      
    69897.014 =a                    778.034 =a , 2R 34 =  

         1R14 =           4 
                     8833.04 −=u   
    Fig.4  Flows and potentials for Example 2 
 
 First, consider a cutest ( ) ( ) ( ){ }4 ,1 ,3 ,1 ,2 ,11 =c , the set of edges connecting vertex 1 and the 
other vertexes. The sum of evaluation flows through 1c , multiplied by each resistance value, is 

141413131212 RRR ααα ++ , which is 1.3, and the sum of evaluation potential differences at 1c  is 

( ) ( ) ( )413121 uuuuuu −+−+− , which is also 1.3. Therefore, Theorem 2 and Theorem 3 are 
confirmed to hold for the cutest 1 in Example 2. 
 Next, consider a cutest ( ) ( ) ( ){ }3 ,4 ,3 ,1 ,2 ,12 =c , the set of edges connecting vertex set {1,4} and 
vertex set {2,3}. The sum of evaluation flows through 2c , multiplied by each resistance value, is 

343413131212 RRR ααα −+ , which is –0.954, and the sum of evaluation potential differences at 

2c  is ( ) ( ) ( )343121 uuuuuu −+−+− , which is also –0.954. Therefore, Theorem 3 is confirmed 

to hold also for the cutest 2c  in Example 2. 
 
6. Topological formula 
 In this chapter we will consider some classes of design graphs with no multiple edge and of Model 
(1) with all sij 'R being equal to 1, and derive topological formulae for the expression of prioritoy 
weight potentials. 
 
6.1 Complete design graph 
 For a complete graph withΝ vertexes, Theorem 3 holds at each node cutest. 
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LLSE solution. 
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Here, notice that 0=+ jiij αα  or 1=⋅ jiij aa  because of the reciprocity assumption, and that 

either measurement ( )ji  ,  or measurement ( )ij  ,  takes place because no multiple edge is allowed 
in the design graph. 
 
6.2 Tree design graph 
 For a tree graph, Theorem 3 holds at each edge cutest. 
      ( ) Εα ∈−= jiuu jiij  ,                            (18) 

Choose any vertex, say vertex k , as a reference point ( )0=ku . Since the topology of design 
graph is tree, there exists only one path, or one chain of edges from vertex i to vertex j, let the chain 
be ( ) ( ){ ..., , , , , 211 jjji  ( )}kjm , , then (19) or (20) is obtained by applying Eq.(18) successively 

along the chain ( ) ( ){ ..., , , , , 211 jjji ( )}kjm , . 
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6.3  1-cyclic design graph 
 Consider a design graph with Ν vertexes where edges are arranged as (1, 2), (2, 3), (3, 4),…,(Ν
－1,Ν ) and (Ν , 1). This class of graphs is called “cycle” or “loop”. Any simple cutest contains 
two edges, say ( )ji  ,  and ( )lk  , . Then, Theorem 3 holds at the cutest. 
 
    ( ) ( )lkjiklij uuuu −+−=+αα       ( ( ) ( ) Ε∈lkji  ,  , , )           (21) 
 
Rearranging these equations and setting vertex Ν as a reference point ( )0=Νu , following 
formula is obtained. 
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       ΝΝΝΝΝδ 121322,11, ... aaaaa ⋅⋅⋅⋅⋅= −−−              (25) 
 
6.4 Complete graph minus one edge 
 Consider a design graph where one edge is deleted from a complete graph. Let the graph has 
Ν vertexes and the deleted edge be ( )Ν ,1 . Then, Theorem 2 or Theorem 3 holds at vertex 
( )Ν ,1i ≠ . 
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So the geometric mean formula works for the priority weight potential for an item with complete 
matching. For the vertexes 1 and Ν , following equations hold. 
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Therefore, we have (31), (32), (33) and (34). 
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〔Example 3〕 Applying the formulae (28), (33) and (34) to the four-node five-edge design graph of 
Example 1 (Fig.1), the followings are obtained. 
 

     ( )4
1

141312111    aaaax =               (35) 

     ( )4
1

242322212    aaaax =              (36) 

( ) ( )2
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34232
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      ( )4
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343332313    aaaax =             (38) 



      ( )4
1

444342414    aaaax =             (39) 

      ( ) ( )2
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 Inserting 6  ,5  ,2  ,2  ,1 3414132312 ===== aaaaa  and assuming the reciprocity, 

2561.0  ,1067.1  ,9839.1  ,7783.1 4321 ==== xxxx  and obtained, which coincide with those 
in Example 1. 
 
7. Conclusion 
 We have introduced the concept of evaluation flow and evaluation potential. Pairwise comparison 
corresponds to flow and priority weight corresponds to potential. It is shown that evaluation flow is 
induced by evaluation potential difference at a cutest, which can be interpreted as a cutset-version of  
KCL ＋Ohm’s law in the electrical resistance-circuit network. Applying the obtained laws and 
equations, we have also presented some topological formulae for priority weight, which will be 
useful in investigating the meaning of LLSE solution. 
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