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Summary:  To achieve a decision with which the group is satisfied, the group members must accept the 
judgments, and ultimately the priorities.  This requires that (a) the judgments be homogeneous, and (b) 
the priorities of the individual group members be compatible with the group priorities.  There are three 
levels in which the homogeneity of group preference needs to be considered: (1) for a single paired 
comparison (monogeneity), (2) for an entire matrix of paired comparisons (multigeneity), and (3) for a 
hierarchy or network (omnigeneity).  In this paper we study monogeneity and the impact it has on group 
priorities. 

 
1. Introduction 

 
In all facets of life groups of people get together to make decisions.  The group members may or may not 
be in agreement about some issues and that is reflected in how homogeneous the group is in its thinking.  
In the AHP groups make decisions by building a hierarchy together and providing judgments expressed 
on a 1 to 9 discrete scale having the reciprocal property.  Condon et al. (2003) mentioned that there are 
four different ways in which groups estimate weights in the AHP: “…consensus, vote or compromise, 
geometric mean of the individual judgments, and weighted arithmetic mean.”  The first three deal with 
judgments of individuals while the last deals with the priorities derived from the judgments.   
 
To achieve a decision with which the group is satisfied, the judgments, and ultimately the priorities, must 
be accepted by the group members.  This requires that (a) the judgments be homogeneous, and (b) the 
priorities of the individual group members be compatible with the group priorities. 
 
There are three levels in which the homogeneity of group preference needs to be considered: (1) for a 
single paired comparison (monogeneity), (2) for an entire matrix of paired comparisons (multigeneity), 
and (3) for a hierarchy or network (omnigeneity).  Monogeneity relates to the dispersion of the judgments 
around their geometric mean.  The geometric mean of group judgments is the mathematical equivalent of 
consensus if all the members are considered equal.  Otherwise one would use the weighted geometric 
mean.  Aczel and Saaty (1983) showed that the only mathematically valid way to synthesize reciprocal 
judgments preserving the reciprocal condition is the geometric mean.  If the group judgments for a single 
paired comparison are too dispersed, i.e., they are not close to their geometric mean, the resulting 
geometric mean may not be used as the representative judgment for the group.   
 
Multigeneity relates to the compatibility index of the priority vectors.  The closeness of two priority 
vectors 1( ,..., )T

nv v v=  and 1( ,..., )T
nw w w= can be tested through their compatibility index (Saaty, 1994) 

given by 2
1 T T
n

e V W eD , where D  is the Hadamard or elementwise product, ( )i jV v v=  and 



( )i jW w w= .  Note that for a reciprocal matrix ( )ijA a=  with principal eigenvalue maxλ  and 

corresponding right eigenvector 1( ,..., )nw w w= , 2
21

max
T T

n
e A W e nλ=D .  Thus, one can test the 

compatibility of each individual vector with that derived from the group judgments.  A homogeneous 
group should have compatible individuals.  It is clear that homogeneity at the paired comparisons level 
implies compatibility at the group level, but the converse is not always true.  At the hierarchy or network 
level, it appears that it is more meaningful to speak of compatibility than of homogeneity.  The main 
thrust of this paper is to study monogeneity.    
 
Dispersion in judgments leads to violations of Pareto Optimality at both the pairwise comparison level 
and/or the entire matrix from which priorities are derived.  Ramanathan and Ganesh (1994) explored two 
methods of combining judgments in hierarchies but they violated the Pareto Optimality Principle for 
pairwise comparisons (Saaty and Vargas, 2003), and hence, they incorrectly concluded that the geometric 
mean violates Pareto Optimality.  Pareto Optimality at the pairwise level is not sufficient to ensure Pareto 
Optimality at the priority level.  Fundamentally, Pareto Optimality means that if all individuals prefer A 
to B then so should the group.  The group may be homogeneous in some paired comparisons and 
heterogeneous in others thus violating Pareto Optimality.  The degree of violation of Pareto Optimality 
can be measured by computing compatibility along the rows, which yields a vector of compatibility 
values.  What does one do when a group is not homogeneous in all its comparisons?  Lack of 
homogeneity (heterogeneity) on some issues may lead to breaking up the group into smaller 
homogeneous groups.  How should one separate the group into homogeneous subgroups?  Since 
homogeneity relates to dispersion around the geometric mean, and dispersion itself involves 
uncertainties, how much of the dispersion is innate and how much is noise that when filtered one can 
speak of true homogeneity?  In other words, how does one separate random considerations from 
committed beliefs?   
 
Dispersion at the single paired comparison level affects the priorities obtained by each group member 
individually and could lead to violating Pareto Optimality.  Should one combine or synthesize the 
priorities of the individuals to obtain the group priority or should one combine their judgments?   
 
Here we develop a way to test monogeneity, i.e., how homogeneous the judgments of the members of a 
group are for each judgment they give in response to paired comparisons.  This is done by deriving a 
measure of the dispersion of the judgments based on the geometric mean.  Computing the dispersion 
around the geometric mean requires a multiplicative approach rather than the usual additive expected 
value used to calculate moments around the arithmetic mean.  This leads to a new multiplicative or 
geometric expected value used to define the concept of geometric dispersion.  The geometric dispersion 
of a finite set of values is given by the geometric mean of the ratios of the values to their geometric mean, 
if the ratio is greater than 1, or the reciprocal, if the ratio is less than or equal to 1.  This measure of 
variability or dispersion of the judgments around the geometric mean allows us to (a) determine if the 
geometric mean of the judgments of a group can be used as the synthesized group judgment, (b) if the 
geometric mean cannot be used, divide the group into subgroups according to their geometric dispersion, 
and (c) measure the variability of the priorities corresponding to the matrix of judgments synthesized for 
the group.  Basak (1988) developed a test of monogeneity using a likelihood ratio criterion applied to the 
entire matrix of judgments, not a single judgment.  In addition, Basak’s test is not intended to answer the 
question: should the geometric mean be used as the group judgment?  Our test examines the homogeneity 
of each set of paired comparisons, and it will allow us to identify individual paired comparisons on which 
the group diverges.   
 
In general, unless a group decides through consensus which judgments to assign in response to a paired 
comparison, the individual members may give different judgments.  We need to find if the dispersion of 
this set of judgments is a normal occurrence in the group behavior.  To do this, we compare the 
dispersion of the group with the dispersion of a group providing random responses to the paired 
comparison.  Thus, we assume that an individual’s pairwise comparison judgments about homogeneous 
elements is considered random, and expressed on a discrete 1/9, …, 1/2, 1, 2,…, 9 scale of seventeen 
equally likely values.  A sample consists of a set of values selected at random from the set of seventeen 



values, one for each member of the group.  It is the dispersion of this sample of numbers around its 
geometric mean that concerns us.  This dispersion can be considered a random variable with a 
distribution.  Because treating the judgments as discrete variables becomes an intractable computational 
problem as the group size increases, we assume that judgments belong to a continuous random 
distribution.  For example, if there are five people each choosing one of 17 numbers in the scale 1/9, 
…,1, …, 9, there are 175 = 1,419,857 possible combinations of which 20,417 are different.  Thus, the 
dispersion of each sample from its geometric mean has a large number of values for which one needs to 
determine the frequency and thus the probability distribution.  To deal with this complexity, we use the 
continuous generalization instead.  This allows us to fit probability distributions to the geometric 
dispersion for groups of arbitrary size.  Once we have the continuous distribution of the geometric 
dispersion, the parameters that characterize this distribution are a function of the number of individuals n 
in the group.     
 
To use the geometric mean to synthesize a set of judgments given by several individuals in response to a 
single pairwise comparison, as the representative judgment for the entire group, the dispersion of the set 
of judgments from the geometric mean must be within some prescribed bounds.  To determine these 
bounds, we use the probability distribution of the sample geometric dispersion mentioned above.  We can 
then find how likely the observed value of the sample geometric dispersion is. This is done by computing 
the cumulative probability below the observed value of the sample dispersion in the theoretical 
distribution of the dispersion.  If it is small then the observed value is less likely to be random, and we 
can then infer that the geometric dispersion of the group is “small” and the judgments can be considered 
homogeneous or α-cohesive at that specified α level.  On the other hand, if the dispersion is 
unacceptable, then we could divide the group of individuals into subgroups representing similarity in 
judgment.     
 
The remainder of the paper is structured as follows.  In section 2 we give a summary of the geometric 
expected value concept and its generalization to the continuous case that leads to the concept of product 
integral.  In section 3 we define the geometric dispersion of a positive random variable and apply it to the 
judgments of groups.  In section 4 we approximate the distribution of the group geometric dispersion.  In 
section 5 we sketch how groups could be divided into subgroups if the geometric dispersion is large, and 
in section 6 we show the impact of the dispersion of a group’s judgments on the priorities associated with 
their judgments.  
 
2. Generalization of the Geometric Mean to the Continuous Case 
 

Let X be a random variable.  Given a sample from this random variable 1( ,..., )nx x x=� , the sample 

geometric mean is given by 1/
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In the continuous case, because [ ] 0P X x= =  for all x, we need to use intervals rather than points, and 
hence, we obtain:  
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Equation (2) is known as the product integral (Gill and Johansen, 1990).  If X is defined in the interval 
(s,t], we have 

0
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In general, we have      
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where XD( )  is the domain of the variable X and ( ) 1
X
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3. The Geometric Dispersion of a Positive Random Variable 
 
Using the geometric expected value, we define a measure of dispersion similar to the standard deviation.  

Let Gσ  be the geometric dispersion of a positive random variable X given by ( )G G
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where the variable ω  has a geometric mean equal to 1 and a geometric dispersion equal to 
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3.1. Geometric Dispersion of Group Judgments 
  
 Let ,  1, 2,...,kX k n=  be the independent identically distributed random variables associated with the 
judgments.  Let { ,  1, 2,...,kX k n= } be continuous random variables distributed according to a reciprocal 
uniform 1

9[ ,9]RU , i.e., the variable lnk kY X= is a uniform random variable defined in the interval 

[ ln 9, ln 9]− .  The probability density function (pdf) of kY is given by [ ln 9,ln 9]
1( ) ( )

2 ln 9
g y I y−= , and 

hence, the pdf of kX  is given by 1
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The sample geometric dispersion is given by: 
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Let [1: ] [ : ]( ,..., )n n nx x  be the order statistics corresponding to the sample { ,  1, 2,...,kx k n= }, i.e., 
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For a group consisting of n individuals, the distribution of 1( ,..., )G nS X X  is given by  
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where ( , )n n GA xυ υ=  represents the number of occurrences of the event { }k GA X x≡ ≤ , and it is also 
equal to the index of the largest order statistic less than or equal to the sample geometric mean 
(Galambos, 1978). Let 
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Thus, the density function is given by: 

 ( ) ,
1 0

( ) ( | ) ( 1)
n n t

k k t
GD GD t k t n

t k
f s f s t S

−
+

+
= =

= −∑ ∑  (5) 
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i.e., the ratio of products of reciprocal uniform variates.  These density functions are of the form 
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There are closed form expressions for the density function of the geometric dispersion for a group 
consisting of three or less individuals, but for groups larger than three, it is cumbersome and not much 
precision is gained from it.  Instead, we approximate them using simulation.  
 
 
4. Approximations of the Geometric Dispersion of Group Judgments 
 
We computed the geometric dispersion of randomly generated samples of size 20,000 under the 
assumption that the judgments are distributed according to a continuous reciprocal uniform distribution 

1
9[ ,9]RU .  We did this for groups consisting of 4, 5,…, 15, 20, 25, 30, 35, 40, 45, and 50 individuals.  

We found that as the group size increases, the geometric dispersion tends to become gamma distributed 
(see Figure 1).   
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Figure 1. Empirical evidence that the geometric dispersion tends to a gamma distribution 

 
The parameters of these gamma distributions are given in Table 1.  To extend these models to groups of 
any size, we fit regression models to the parameters of the gamma distributions.  Regression models of 
the shape (α) and the scale (β) parameters versus n appear to be surprisingly robust (see Figure 2). 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Table 1: Gamma Distribution Parameters 

 1( , , )
( )

xGamma x e
α

α ββα β γ
α

− −=
Γ

 

n shape scale
4 7.21941 2.26901
5 9.54982 2.90437
6 12.0516 3.5716
7 14.1545 4.11966
8 16.2258 4.68153
9 19.167 5.44538
10 21.2015 5.97099
11 23.8091 6.66681
12 26.0026 7.24739
13 28.6438 7.94882
14 31.4581 8.68441
15 34.2511 9.43706
20 46.5524 12.6275
25 59.6742 16.1022
30 72.8182 19.5538
35 85.8502 22.9968
40 99.753 26.6571
45 112.452 29.9817
50 125.683 33.4882  
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α(shape) = -4.31187 + 2.58619*n  β(scale) = 0.518785* 1.06624n  

(R-squared = 99.9713)   (R-squared = 99.9883) 
 

Figure 2. Shape and scale models 
 

In addition, the average and variance of the geometric dispersion can also be estimated from the 
parameters of these models:  
 

mean = exp(1.33862 - 0.732121/n)  (R-squared = 99.90) 
variance = 5.90407* -1.00867n   (R-squared = 99.9339) 

 
Note that as n tends to infinity, the average geometric dispersion tends to 3.81377 (99% C.I.  
(3.79522,3.83241)) and the variance tends to zero (99% C.I. (4.93278E-9, 3.8661E-9)).  
 
4.1. Statistical Test for Group Dispersion 
 
Because we are not comparing the geometric dispersion to a specific parameter value, but we want to test 
if it is large or small in comparison to the dispersion of totally random judgments, the hypothesis test is 
compound rather than simple.  Let 0s  and 1s  to be the state of nature in which the judgments are random 

and non-random, respectively.  Let ia  be the action associated with selecting is  as the correct state of 

nature.  Thus, if the decision is to take action 0a , the hypothesis H0 is said to be accepted (and H1 

rejected), and if the action is 1a , then H0 is rejected (and H1 accepted).  We now have the basis for a 
statistical test to decide if the dispersion of a group can be considered larger than usual, i.e., that the 
probability of obtaining the value of the sample geometric dispersion of the group is greater than a pre-



specified significance level (e.g., 5 percent) in the distribution of the group geometric dispersion.  Hence, 
to reject H0 at a given significant level α, the following must hold:   
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For example, for a group of size 6, whose judgments on a given issue are equal to {2, 3, 7, 9, 1, 2}, the 
geometric dispersion of the group is equal to 1.9052169.  The average geometric dispersion is estimated 
to be equal to exp(1.33862 - 0.732121/6) = 3.37568.  Taking the usual significance level of 5 percent, we 
observe that [ (6) 1.9052169] 0.0434721 0.05GP S < = < .  Thus, the p-value corresponding to the sample 
geometric dispersion indicates that it seems rare to observe values of the geometric dispersion smaller 
than the sample geometric dispersion, and hence, the geometric dispersion of the group is not unusually 
large, which in turn implies that the geometric mean can be used as the representative preference 
judgment for the entire group. 
 
 
5. Group Member Classification by the Geometric Dispersion 
 
Let us assume that { },  1, 2,...,kx k n=  is a group of judgments and let { }[ : ] ,  1, 2,...,k nx k n=  be their order 

statistics.  If   1 1 1[ ( ,..., )] [ ( ,..., ) ( ,..., )]GD G n G n G nF s x x P S X X s x x α≡ ≤ <  (where α is usually taken to be 
equal to 0.05) then the geometric mean can be used as a representative of the group judgment.  On the 
other hand, if 1 1 1[ ( ,..., )] [ ( ,..., ) ( ,..., )]GD G n G n G nF s x x P S X X s x x α≡ ≤ >  then the group needs to discuss 
the paired comparisons further in an attempt to reach consensus.  To determine which members of a 
group disagree the most and hence make the geometric dispersion large, we find the p-values 
corresponding to the geometric dispersions of the groups of judgments given by: 
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Theorem 1: Given a set of judgments { }[ : ] ,  1, 2,...,k nx k n=  with corresponding ordered geometric 

dispersions { }( ),  1, 2,...,Gs k k n= , if for any k, [ ( ) ( )]G GP S k s k α≤ ≤  then [ ( 1) ( 1)]G GP S k s k α− ≤ − ≤ . 

Proof: By Lemma 1, given a set of judgments { },  1, 2,...,kx k n= , we have 

(2) (3) ( ) ( )G G G Gs s s k s n≤ ≤ ≤ ≤ ≤" " .  If [ ( ) ( )]G GP S k s k α≤ ≤ , then 

[ ( ) ( )] [ ( 1) ( )]G G G GP S k s k P S k s kα ≥ ≤ = − ≤  because [ ( ) ( 1)] 1G GP S k S k≥ − = .  In addition, 

since for the given set of judgments, ( ) ( 1)G Gs k s k≥ − , then 

[ ( 1) ( )] [ ( 1) ( 1)]G G G GP S k s k P S k s k− ≤ ≥ − ≤ − , and the result follows. � 
 
Definition: A group of judgments { },  1, 2,...,kx k n=  is said to be α-cohesive if [ ( ) ( )]G GP S n s n α≤ ≤ . 
 
Definition: A member of a group of α-cohesive judgments is said to be a liaison of the group if the 
group is not α-cohesive after the elimination of the corresponding judgment from the set of judgments. 
 
The Liaison Theorem: Given a group of n α-cohesive judgments, a liaison does not exist if and only if 
all subgroups of cardinality (n-1) are α-cohesive. 
 
The existence of a liaison means that we may be able to divide a group into two subgroups whose 
preferences differ, and for which the geometric mean cannot be used as the representative group 
judgment.  This is the subject of further study. 
 
 
6. Geometric Dispersion and Priority Variation 
 
To study the relationship that exists between the geometric dispersion of a group and the dispersion of the 
corresponding eigenvectors, we find the range of variability of each component of the eigenvector for 
given sets of group judgments.  This is done by first finding the distribution of the eigenvector 
components for random reciprocal matrices whose entries are distributed according to reciprocal uniform 
distributions RU[ , ]ij ijl u .  It can be empirically shown using simulation for any reciprocal matrix A whose 

entries are distributed according to a reciprocal uniform distribution RU 1
9[ ,9] , the average principal 

eigenvector is given by 1[ ]i nE w = , i=1,…,n, where ( , )i i iw Beta α β∼ .      The beta distribution has a 

density function given by ( ) 1 1
( ) ( )( ) (1 )f x x xα β α β
α β

Γ + − −
Γ Γ= −  where 1

0
( ) z tz t e dt

∞ − −Γ = ∫ .  It is also known that 



1[ ] ( )E X α α β −= + .  To approximate the parameters of the beta distributions for different size matrices, 
we generated 1000 random reciprocal matrices of size 3, 4, 5, 6, 7 and 8 with entries distributed 
according to a reciprocal uniform RU[1/9,9], and computed their principal right eigenvector.  Since the 
average of each component would in theory be equal to 1/n, we estimated the parameters of each beta 
distribution for each component and averaged them to obtain the following parameter values given in 
Table 2, and fitted a regression equation to 1βα −  because 1 1 nβα − = − +  from 1[ ] ( ) 1/E X nα α β −= + = .  
Figure 3 summarizes this result. 

Table 2. Estimates of Eigenvector Parameters 
n alpha beta
3 1.953273 3.906793
4 2.595685 7.79392
5 3.573498 14.29522
6 4.403508 22.01288
7 5.220617 31.32874
8 5.991939 41.94776   

Plot of Fitted Model
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1[ | ]E nβα − =  -0.998818 + 0.999898*n   (R-squared = 1.0) 

Figure 3. Estimate of the Principal Right Eigenvector of a Random Reciprocal Matrix with Entries 
Distributed according to 1

9[ ,9]RU  
 

We extend this result to an arbitrary reciprocal matrix in the following theorem. 
 
Theorem 2: For a random reciprocal matrix ( )ijX x=  with entries distributed according to a reciprocal 

uniform distribution, ~ [ , ]ij ij ijx RU l u , the components of the random variable 1( ,..., )T
nw w w=  

corresponding to the principal right eigenvector are distributed according to a beta, 

( , )i i
i i

i i

w w
Beta

w w
α β

−
−

∼ , where min{ }i iw w=  and max{ }i iw w= , and the principal right eigenvector of 

the reciprocal matrix whose entries are given by the geometric mean of its entries, [ ]G ijE x , is given by: 

( )1

1 11 1 1 1( [ ],..., [ ]) ( ) , , ( )n

n n

TT
n n n nE w E w w w w w w wαα

α β α β+ += − + − +" . 

 
Let ij

ij ij ijx wσµ=  where ij ij ijl uµ = is the geometric mean and ijσ  is the geometric dispersion of 

~ [ , ]ij ij ijx RU l u .   By definition, 1/ji ijµ µ=  and ji ijσ σ= .  Thus, we have 1/ji ijw w= .  Let us assume 
that the reciprocal matrix of geometric means is consistent, i.e., ij jk ikµ µ µ= .  Then the principal right 

(pr-) eigenvector of the matrix ( )ij
ij ij ijx wσµ=  is given by the Hadamard product of the pr-eigenvector of 

the matrix ( )ijµ , wµ , and the pr-eigenvector of the matrix ( )ij
ijwσ .  The entries of this matrix are random 

reciprocal uniform variables [ , ]ij ij ij ijRU l uµ µ  whose geometric dispersion is given by ( )1/ 4

ij iju l .  

Since the geometric dispersion of the variables ijx  and that of the variables ij
ijwσ  is the same, because 



ij
ij ij ijx wσµ = , we have ( )1/ 4

ij ij iju lσ = .  Thus, bounding the dispersion of the entries of the matrix ( )ij
ijwσ  

bounds the dispersion of the entries of the matrix ( )ij
ij ij ijx wσµ= .   

 
6.1. Example 
 
Consider the following matrix whose entries are distributed according to reciprocal uniform distributions, 
along with the corresponding geometric expected value and pr-eigenvector:  

{ } { } { }
{ } { }

{ }

1
12

2
25

33

4

[ ]
[ ] 1 3 1 2 0.36361 [1,9] [ , 2] [1, 4]
[ ] 1 3 4 0.31501 [1,9] [2,8]
[ ] 1 5 0.23831 [3, ]
[ ] 1 0.08311

G G G

G G

G

A E w
E wE RU E RU E RU
E wE RU E RU
E wE RU
E w
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⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

Using simulation, we generated a sample of 5000 randomly generated reciprocal matrices, whose entries 
follow the reciprocal uniform distributions described above.  The random pr-eigenvector whose 
components are beta distributed with parameters given in Table 3. 

 
Table 3. Distributions of the Eigenvectors 

1 2 3 4

12.7672 10.3616 14.707 17.9337
22.2938 22.2574 47.6604 199.735
0.3641 0.3177 0.2358 0.0824
0.3636 0.3150 0.2383 0.0831[ ]

w w w w

E w

α
α β

α
β

+

 

 
7. Conclusions 
 
In this paper we put forth a framework to study group decision-making in the context of the AHP.  A 
principal component of this framework is the study of the homogeneity of judgments provided by the 
group.  We developed a new measure of the dispersion of a set of judgments from a group for a single 
paired comparison, and illustrated the impact that this dispersion has on the group priorities.  A subject of 
future research is the study of the relationship between dispersions on the individual paired comparisons 
in the entire matrix, the consistency of judgments, the compatibility of the priority vectors and the 
measurement of the violation of Pareto Optimality.  
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