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ABSTRACT 
 
This paper presents the use of  times series Auto-Regressive Integrated Moving Average (ARIMA) ARIMA model with 
interventions, and artificial neural network back-propagation models in analyzing the behavior of sales in a medium size 
enterprise located in Brazil for the period January 1990 to December 2005. The ARIMA model interventions presented 
a residual variation of 0.0008, where as the neural network model presented a residual variation of 0.0003. The chosen 
neural network presented, for the last 12 months, better forecasts was 4.2532 and that of the ARIMA model with 
interventions was 6.8237. The model obtained by the Neural Network was superior to ARIMA model, in adjustment as 
well as in forecasting for the data analyzed. 
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1. INTRODUCTION 

Artificial Neural Network is becoming a poweful tool for scientists working in various fields, such as optimization, 
pattern recognition and forecast. The so called Neural Nets models are formed by a set of non-linear elements arranged 
in layers which operate in a parallel manner similarly to the human brain. In this paper we show a study  of a neural 
network models applied to the area of time series analysis and forecasting and comparation wiht ARIMA model. The 
literature on the kind of application considered here stared in the second half of the last decade. The first papers 
showing the gain in forecasting accuracy with neural network models was published in 1987 by Lapedes & Farber 
(1988). After his study, various paper containing similar comparisons have always pointed to the same approachs. For a 
detailed review of forecasting the ARIMA methodology, we recommend Box & Jenkins (1976). This paper application 
an approach  for study the sales data collected from medium size enterprise located in Santa Maria (RS), Brazil for the 
period January 1990 to December 2005. The methodologies  related to this paper is presented in section 2.  The 
empirical analysis and discussion on the results are presented in section 3.  Conclusions are highlighted in section 4.  

 

 

2. METHODOLOGIES 

 

2.1 Artificial neural networks 

 

According to Kohonen (1987) one possible definition to artificial neural Networks could be. Artificial consist 
of parallel networks of single and adaptive interconnected elements which interacts with objects of the real world as do 
the biological neural system. The neural network models are formed by associating a set of known inputs to the 
corresponding set of outputs previously stored. As stated by Rumelhart & Mc Clelland (1986) these models, which aim 
to represent the human brain and its neurons, has the "Parallet Distributed Processing property and is characterized by 
following aspects: 

- a set of processing units; 

- an activation state; 



- an output function for each units; 

-  weights for the connection as between units; 

- an weighting propagation rule; 

- an activation rule which combines the input of a unit with its current state to produce a new activation level for the 
unit; 

- a learning rule, which alows the changes in the weights; 

- an enviroment where the system operates. 

 

2.1.1Backprogation model  

 The backpropagation model thoroughly used in the current formulation of neural network models is the 
paradign normally adapted in areas such as, pattern recognition and mainly in the forecasting or time series (Beale, 
1990; Refenes, et al, 1997). 

 Equation (1) to (3) show below  the backpropagation algorithm. The subscripts i and j are used to identify a 
particular weight and k to identify the layer while the superscripts denote the step of adjustment. To start the process, 
small random numbers are set as weights and then equations (1) to (3) are used to adjust them. 
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for i=1, 2 ..., I; j=1,2 ..., J and k=K 

where: w y k
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,
+  is the weight connecting neuron i in layer k-1 to neuron j in layer k at step n+1; 

η is the training rate coefficient (usually between 0.001 and 1.0); 
yi,k is the output of neuron i in layer k; 
yi k

T
,  is the target value for yi,k. 

  

Note that the algorithm above can only be applied to the last layer (k=K) of neurons, since it requires the knowledge of 
the target output value. For the hidden layers there is no target output and, therefore, δ j k, has to be obtained in another 

fashion. Backpropagation derives its name from the fact that it propagates the value of δ j k, backwards throughout the 
networks. For the hidden layers equation (3) has to be modified as: 
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        for k=1,2 ..., K-1. 

 

(4) 

 

2.2 ARIMA(p,d,q)  model 
 

Their approach consists essentially in fitting a parametric linear stochastic model to the stationary time series. 
They argue that most real processes, although non-stationary, exhibit some consistency in their behaviour. In particular, 
it is often the case that the first or second difference of the process is stationary. Thus although {Zt} may be non-
stationary, {∇d Zt } is stationary. It having obtained a stationary process { tω } say, by differencing if necessary, they 
attempt to identify it as a mixed autoregressive moving average (ARIMA) process, i.e. it satisfies an equation of the 
form  
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B: backward shift operator, is defined as  kt1t
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ΔdZt: difference operator, is defined as ΔdZt = = Zt – Zt-d tω
Alternatively, we can rewrite this model in level as form 
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φ(B) = (1 - φ1B - ... - φpBp), is an autoregressive polynomial of order p;  
θ(B)= ( 1-θ1B - ... - θqBq) , is a moving average polynomial of order q.  
 

The  roots  of φ(B) = 0  must lie outside  the unit  circle  in  order  to  guarantee  stationarity  (of  ) and to 
ensure uniqueness of representation, the roots of θ(B) =  0 must also lie outside the unit circle. 

tZ

 
at: white noise process, normally and independently distributed with mean zero, constant variance  (NID(0, )), 
and independent of Zt-1, that is, 
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E(at, Zt-1) = 0 
 

This paper the construction of ARMA (p,d, q) model was obtained through the iterative cycle of Box-Jenkins 
methodology: identification, parameter estimation and diagnostic checking, Box & Jenkins  (1976). 
 
i) Model identification defines the (p,d, q) orders of the AR and MA components, nonseasonal. In this step, fundamental 
analytical tool is the autocorrelation function (ACF) and partial autocorrelation function (PACF) . 
 

The ACF and PACF are very important for the definition of the internal structure of the analyzed series. The 
ACF ρk at lag k of the  series is the linear correlation coefficient between  and , calculated for k =0, 1, 2... tZ tZ 1tZ −
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where: 

Var (Zt) = Var (Zt+k) = γ0 = variance of process 

ρo = 1 e, ρk = ρ-k.  

An estimate of ρk can be calculed using the formula: 
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The PACF is defined as the linear correlation between  and , controlling for possible effects of linear 

relationships among values at intermediate lags.  
tZ 1tZ −
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Theoretically, both an AR (p) process and an MA (q) process should be associated with well-defined patterns 

of ACF and PACF, usually decreasing exponential or alternate in sign or decreasing sinusoidal patterns. A precise 
correspondence between ARMA (p,q) processes and defined ACF and PACF patterns is more difficult to recognize. 
When the order of at least one of the two components (AR or MA) is clearly detectable, however, the other can be 
identified by attempts in the following step of parameter estimation.  
 
ii) Parameter estimates are usually obtained by maximum likelihood, which is asymptotically correct for time series. 
Estimators are usually sufficient, efficient, and consistent for Gaussian distributions and are asymptotically normal and 
efficient for several non-Gaussian distribution families. 
 
iii) Validation of the goodness of fit of an ARMA model can be developed according to the following steps: 
 
1) Evaluation of statistical significance of parameters by the usual comparison between the parameter value and the 
standard deviation of its estimate. For a test statistic that is valid only asymptotically, a parameter whose value exceeds 
twice its standard error can be considered significant. 
 
2) The stage of verification of the choice of the model, affected in the previous item, consists in evaluating if the 
residuals of that model forms a process of  white noise. 
 

The verification can be made through the autocorrelation of the residuals, or either, the inspection of the graph 
. If the model is adjusted, the autocorrelations )â(ˆ kρ )â(ˆ kρ  must practically be all inside of the limits of 2 standard 

deviation. If the verification of the diagnosis accuses inadequacy of the model, it is necessary to find a new model for 
study. If model inadequate, repeat procedure 

±

 
2.3 ARIMA Model with Intervention 
 

The intervention model we would modify equation (6 ) as follows: 
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and where represents the intervention model. could be a step function or a pulse input variable  T
tI)B(ψ T
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2.4 Performance Criteria 
 

We measure the performance of both models by the out-of-sample Root Mean Ssquared Error (RMSE), 
defined as: 
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where t is the model prediction at time t and T is the size of the out-of-sample training set. tẐ
 

The Mean Absolute Percentage Error (MAPE) is measure of accuracy in a fitted time series value . It usually 
expresses accuracy as a percentage. 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

−
=

=

T

1t t

tt

Z
ẐZ

T
1MAPE  

 

3. EMPIRICAL ANALYIS AND RESULTS 

 

The sales data collected from medium size enterprise located in Santa Maria (RS), Brazil for the period 
January 1990 - December 2005 have been analyzed using the ARIMA model with intervention  and Neural Network 
back-propagation model. 

 
 
3.1 ARIMA Model with Intervention 
 

The adjusted model is with interventions ARIMA (1,2,1). The estimated parameters and statistics of the model 
are presented in Table1. 
 

 
 
 
Table 1 – Estimated parameters and statistics “t” for the  univariate model with interventions for the 

time series sales data 

 Paramet
er 

Estimated Value Statistic “t” 

φ1 -0.2553 -2.02 
θ1 -0.3987 -3.38 
ξ1 -0.1256 -3.78 
ξ2 -0.3765 -4.10 
ξ3 -0.1857 -3.97 
ξ4 0.1074 2.18 
ξ5 0.8476 1.85 

The adjusted statistic and noise statistics for the model are: 

R² = 0.9546: Mean ≅ 0.0000; and Variance = 0.00008 
 

The identified interventions for the sales data during the period analyzed are presented in Table 2 considering a 
level of significance of 5%. 
 

Table 2 – Types of detected interventions 
Type of intervention Instant Period 

I1t → 1 04 APRIL/90 
I2t → 1 45 SEPT/93 
I3t → 2 56 AUG/94 
I4t → 3 60, 72,… DEC/94 
I5t → 2 65 MAY/95 



 
The types of interventions occurred are: impulse, step, and seasonal impulse. It observed that the estimated 

coefficients of the intervention variables ξi have their expected signals. That is ξ1,  ξ2  and ξ3 have negative signals, when  
ξ4 and ξ5 have positive signals: 
 
1. The first intervention represent the reflection due to Color Plan that imposed freezing of prices, which was in vigor 

from March  of 1990: 
2. The intervention of  Sptember 1993, is the reflection of heterodox shock of Real Plan. 
3. The intervention occurred in August 1994 is due to the price increase in consequence to inflationary memory; 
4. The increase in sales in Dec 1994 is characterized by the seasonal effect; 
5.  Finally X5t represents the level change. 
 
 
3.2 Neural Network 
 

Concerning the Neural Network model, based on the linear dependence structure identified in the Box & Jenkins 
model, the selected network was the (4,2,1). 
 
1. four units in the input layer; 
2. two units in the hidden layer; 
3. one unit in the output layer Zt-1. 
 
Training: The sales series was trained 1400 times, updating the weight for every 30 repetitions. The learning constant 
was maintained at 0.12 and in the last 300 repetitions, a memory loss term of  0.4 was used. This term was used to 
provide more weight for the most recent observations. The momentum term used was 0.7. The varying interval size of 
the weight was 4. 

 
To help comparing the two approaches we calculate the Mean Absolute Percentage Error (MAPE) and the 

Root Mean Square Error (RMSE).. The observation from January to December 2005 were used to analyze the 
forecasting performance of the fitted models. The performance of the two approaches is summarized below in Table3. 
 
 

Table3. Performance of the two approaches 
Forecasting model RMSE MAPE 

ARIMA 0.1548 0.7216 
Neural Network 0.1126 0.5843 

 
The results show that the Neural Network model  adjust well to  the sales data, and provide acceptable  forecast 

for the period analyzed with basis in  the RMSE and MAPE, respectively. Hence, the Neural Network model is more 
adequate in study the sales data. 

 

 

4. CONCLUSIONS 

We presented in this paper two approaches for the study the sales data  collected from medium size enterprise 
located in Santa Maria (RS), Brazil for the period January 1990 - December 2005. Box and Jenkins (1976) formalized 
the ARIMA modeling framework by defining three steps to be carried out in the analysis: identify the model, estimate 
the coefficients and verify the model.  The intervention analysis revelead 5 significant events (p<0.05).  

 
The question concerning the identification of optimal architecture of the network has not been answered. 

However, as we showed, some clues on the nature of the nature of the input units could be obtained via an exploratory 
data analysis, including plot of series, autocorrelation and partial autocorrelation functions. 

 
Neural Network model was more efficient  that ARIMA model for study of sales data.  
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