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ABSTRACT 

It is shown that for concordant supermatrices the, supermatrix approach succeeds by simply 
undoing ruirmalizations required by the Al-1P. For these supermatrices the same results are 
more easily obtained by leaving the measurement data unnormalized and using the standard 
weighted-sums approach. A subsequent paper at this symposium shows that for discordant 
supermatrices even the supermatrix approach yields arbitrary and ambiguous results. 

INTRODUCTION 
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In the AHP [5] rank reversal (and other distortions of overall priorities) due to the addition or 
deletion of tan alternative is the source of much controversy. Opponents of AHP contend that 
rank reversals and distortions demonstrate a fundamental flaw. Some opponents even propose 
methods for modifying hierarchical composition to avoid such rank reversals and distortions 
[1] [2] [6] [9] [10]. In contrast, proponents of AHP argue that rank reversals and distortions 
are acceptable, or that in the cases cited the criteria are not independent of the alternatives--that 
the superrhatrix approach, rather than hierarchical composition, must be used. These 
proponents; maintain that hierarchical composition is a special case of the supermatrix 
approach, and that the supermatrix approach is always applicable. 

This paper shows that for concordant supermatrices (all supermatrices based upon objective 
absolute measurements and some based upon subjective relative measurements), the 
supermatrix approach proffered by AHP proponents succeeds by simply undoing the 
eigenvector normalizations required by AHP (now recognized as the cause of rank reversals 
and priority distortions). For these supermatrices the same results can be obtained more easily 
by leaving the measurement data unnormalized and using the standard weighted-sums 
approach. A subsequent paper at this symposium [8] shows that for discordant supermatrices 
(all remaining supermatrices) even the supermatrix approach is incorrect. Thus, the 
supermatrik approach is unnecessary in the one case and invalid in the other. 

After defihing concordance and discordance and stating Proposition 1: the denormalization 
effect of concordant supermatrices (which is proved in the Appendix),, this paper provides 
illustrations using examples from an oft cited paper by Harker and Vargas (H&V) [4]•' 
Concomitantly, three tenets of AHP propounded in the H&V paper are critiqued: 

1. Rank reversal occurring from the addition or deletion of an alternative is a "fact of 
life". 

2. Copies of alternatives should be excluded from the list of alternatives under 
consideration. 

3. Hierarchical composition is a special case of the supermatrix approach. The 
supermatrix approach is always valid, but when applicable, hierarchical composition 
yields correct results more simply. 

It is shown that the first two tenets are invalid and the third tenet requires extreme conditions. 
A corollary to Proposition 1 shows that the "independent" weights required for hierarchical 
composition generally cannot be independent of the altematives.3
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CONCORDANT AND DISCORDANT SUPERMATRICES 

The first subsection of the Appendix reviews pertinent background of supermatrix theory, and 
provides the nomenclature for defining concordant and discordant supermatrices. Note that the 
element of matrix X, (x..), is the absolute measurement of Alternative i on Criterion j, A = 
(ai.) is the matrix of reladve scores of the alternatives with respect to the criteria, and B = (b.. 
is ihe matrix of relative scores of the criteria with respect to the alternatives. 

With absolute measurements in X, the matrices A and B can be derived from X (either directly 
or from objective pairwise-comparison matrices). In the absence of absolute measurements, 
i.e., for relative measurements, there is no measurement matrix X and A and B must be 
developed from pairwise-comparison matrices assessed by the decision maker (DM) 
subjectively. In the former case it is possible to regenerate X (within a constant of 
proportionality) from A and B, and the regenerated X allows derivation of that same A and 
that same B. In the latter case, it is possible to compute an induced X from A and B, but the 
A and B derived from the induced X may not be the same as those used to induce X. 

DEFINITION 1. Matrices A and B, and hence the supermatrix comprising them, are 
concordant if and only if the matrix X they induce yields that same A and that same B. 
Otherwise, they are discordant.

Concordance indicates compatibility between A and B; discordance, lack of compatibility. It 
follows that A and B derived from an X determined from absolute measurements will always 
be concordant. Those developed from relative measurements can be discordant. Specifically, 
letting C. = Eixi. be the sum of Column j and R. = E.x.. be the sum of Row i, a.. = x../C. and 
b x.. = ../R. if an  only if A and B are concordani (seet811). u '.1 .1 

.11

The main implication of concordance can now be stated. As shown in the Appendix, 

PROPOSITION 1. The concordant-supermatrix approach works by undoing the eigenvector 
normalizations (normalization of the columns of A) required by AHP.4

Accordingly, there is no need to bother with AHP normalization in the first place. Indeed, 
there is no need to bother with the supermatrix at all. Under absolute (objective) 
measurements the overall priorities can be more easily computed directly from X as the vector 
of normalized row sums. Under concordant relative (subjective) measurements the 
nonpreemptive linear goal program used to determine concordance/discordance yields the 
overall priorities as standard output (see [8]). 

UNDOING EIGENVECTOR NORMALIZATION 

The undoing of eigenvector normalization is illustrated using the Dyer and Wendell [3] 
example from H&V [4, pp. 1396-1398]. As shown in Table la, there are three and four 
alternatives being evaluated under four criteria. Measurements are absolute (objective). Since 
the criteria are assumed equally important, the overall priorities (Columns 6 and 8, for three 
alternatives and four alternatives) are simply the normalized row sums (the row sums divided 
by 52 and 70, respectively). Columns 7 and 9 show that whether alternative A 4 is absent or 
present, the rank order of the other three alternatives does not change. There is no rank 
reversal from the addition or deletion of A 4. 

Tables lb and lc show what happens using the standard AHP paradigm, hierarchical 
composition. Using either pairwise comparison matrices (or since the matrices are consistent, 
Theorem 7.22 in [5]), eigenvectors of alternatives are obtained which have been normalized by 
dividing by the column sums. Then, using equal weights for the criteria, the overall priorities 
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are computed. In both cases the overall priorities and rank order are different from those in 
Table la and rank reversal among A1-A3 occurs upon the addition or deletion of A4. 

Which priorities and rank orders are correct, Tables lb and lc or Table la? Since the 
measurements are absolute (objective) Table la is correct. Suppose that (unlike in [3] and [4]) 
each alternative represents a different path of four links between common beginning and 
ending nodes, that the criteria represent the links (C1 the first link, C2 the second, etc.), and 
that the individual measurements are the link lengths. If the focus (overall objective) fs total 
path length, criteria weights are equal and each alternative's total path length is given by its 
row sum in Table la. Certainly, the presence or absence of A, cannot affect the total path 
length or the rank order of the other alternatives. Yet, using AHP's hierarchical composition, 
there is just such an effect. 

H&V contend that in this case independence of criteria from alternatives is violated and 
therefore the supermatrix approach, not hierarchical composition, should be used [4, p. 1397]. 
They then show that with the supermatrix, the four-alternative case gives the correct overall 
priorities (Column 8 in Table la.) But, other than their assertion that the supermatrix 
approach, not hierarchical composition, should be used, H&V do not explain why the 
supermatrix,approach is successful. As illustrated below, the reason is given in Proposition 1. 

The Concordant-Supermatrix Approach. 

Figure 1 shows the (concordant) supermatrix, W, for the three-alternative case (which H&V 
omit). Raising W to a sufficiently high odd power (here 25 is used) yields supermatrix W 25. 
Each column of the southwest partition gives the correct overall priorities--those in Column 6 
of Table la. Thus the concordant-supermatrix approach (henceforth supermatrix approach) 
gives the correct rank order of the alternatives (Column 7). 

Additionally, consider the four-alternative case, Figure 2, which H&V do present. Again W is 
concordant 'and again each column in the southwest partition of W 25 gives the correct overall 
priorities (Column 8 in Table la) yielding the correct rank order (Column 9). 

By giving the correct overall priorities, the supermatrix approach avoids the rank reversal and 
other distorti, ons of overall priorities that are so troublesome in hierarchical composition. 
Accordingly, contrary to Tenet 1, rank reversal is not a "fact of life". 

How does the supermatrix approach achieve what hierarchical composition fails to achieve? 
According to supermatrix theory, in both Figures 1 and 2, each column in the northeast 
partition of W 25 gives the set of independent criteria weights--weights which if premultiplied 
by the A matrix (the southwest partition of W) would yield the correct overall priorities 
directly. As illustrated in Figures 1 and 2, the b vector is any column of the northeast 
partition of' W 25, and the b-vector's components are also the normalized column sums from 
Table la. That is, the numerator of component b. is the column sum, C., used to normalize the 
jth eigenvector and obtain Tables lb and lc. As 'shown in Figures I add 2, these independent 
criteria weights undo the eigenvector normalizations: A * b = OPRTY, the vector of overall 
priorities. , Thus, as stated earlier in Proposition 1 (and proved in the Appendix): the 
supermatrix approach works by undoing AHP-required eigenvector normalization. 

ARE COPTF.S LEGITIMATE? 

In another example, H&V criticize Belton and Gear's example of rank reversal [1] by asserting 
that alternatives which are copies of other alternatives must be omitted from the choice set [4, 
pp. 1399-1400]. We now show that while hierarchical composition might fail with copies, the 
supermatrix approach deals with them successfully. 
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The Belton and Gear example is shown in Table 2a. After comparing three alternatives on 
three equally weighted criteria, they add a fourth alternative, A4, which is a copy of A,. 

Tables 2b and 2c show what happens with AHP's hierarchical composition: the presence or 
absence of AA changes the rank order between A, and A,. Curiously, unlike the previous 
example, in this case H&V do not defend the rank reversal by asserting violation of criteria 
independence. Instead, they challenge the presence of A4 because it is a copy of another 
alternative, claiming that copies violate one of the axioms of AHP and should be ruled out 
"because [a copy] does not add anything to the choice set" [4, p. 1399]. The supermatrix 
approach, which they fail to examine, shows that copies need not be ruled out. 

Figures 3 and 4 show the supermatrix approach in the absence and presence of copy AA. As 
before, the independent criteria weights (the components of the b vector, equivalently the 
components of each cotumn in the northeast partition of W 25) undo the AHP-required 
eigenvector normalizations: A * b = OPRTY, the vector of overall priorities. Thus, the 
presence or absence of the copy does not affect the rank order of the other alternatives. In 
other words, contrary to Tenet 2, using the supermatrix approach, copies are legitimate. The 
flaw is not in using copies, but in the basic paradigm of AHP, hierarchical composition. The 
flaw is the failure of hierarchical composition to do what the supermatrix approach does--undo 
eigenvector normalization. Indeed, the flaw is normalizing the eigenvectors in the first place. 

HOW SPECIAL A CASE IS HIERARCHICAL COMPOSITION? 

Although it is generally held that hierarchical composition is a special case of the supermatrix 
approach, it is generally not appreciated how special that special case must be. 

In [4, pp. 1400-1401] H&V try to demonstrate that hierarchical composition is equivalent to 
the supermatrix approach when the northeast partition of W consists of identical columns. As 
they illustrate (and as can be shown in general), the northeast partition of W21(±1 then also 
consists of the same identical columns, i.e., raising W to the 2k+1 power does not change the 
northeast partition. Therefore, H&V conclude, the independent criteria weights are given by 
any of those identical columns. 

That conclusion is misguided. For hierarchical composition to be a valid substitute for the 
supermatrix approach, more than those identical columns is needed. H&V have only 
illustrated an artifact of raising W to a power: any set of identical columns (that each sum to 
one) will exhibit the same phenomenon--the columns in the northeast partition will not change. 
But that alone does not make them the correct independent criteria weights. Nor can the 
independent criteria weights be imposed exogenously. Rather, for each alternative (for each 
column of the northeast partition) the criteria weights must be the components of the 
eigenvectors resulting from pairwise comparison matrices among criteria. It must turn out that 
each of these eigenvectors is the same and that each undoes the normalizations of the 
eigenvectors of alternatives. We now show what is required and how special the 
circumstances are.5

Using the nomenclature given in the first subsection of the Appendix, for identical columns, b., 
= b., for all columns i of B = (b.,). Since the column vector (b.1) must undo th6 
nomializations of the columns of X and must sum to one, it is necessary that 

(l) bj, = Ci/C, j 1, n. 

But by definition the elements of the concordant matrix B are 

(2) b.. x../R.. 
.11 11 I 
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Substituting (1) into (2), the elements of X = (xii) must satisfy 

(3) x.. = R.C./C, 
Ii I 

and the elements of the concordant matrix A = (a) must satisfy 

(4) a. = x../C. = R/C = R./R. 
Ii Ii 1 

Thus, the entire matrix X = (xii) must satisfy (arbitrarily in terms of 

(C2 /C1 ) (C3 /C1 ) 

(R2 /R1 ) (C2 /C1 ) (R2 /121 ) (C3 /C1 ) x1,1

(R3 /121 ) x1,1 (R3 /121 ) (C2 /C3) (R3 /R1 ) (C3 /C1 ) x1,1

Therefore, 

1. The columns of B must be identical. 

• • • 

• • • 

• • • 

2. Each element of the columns of B must cancel the corresponding column sum of X. 

3. The columns of A must be identical. 

More fundamentally, items 1-3 imply: 

4. The rows of X must be proportional to each other. The constant of proportionality 
must be the ratio of their row sums. 

5. The columns of X must be proportional to each other. The constant of 
proportionality must be the ratio of their column sums. 

Merely imp
I
osing identical columns of B without satisfying all of the foregoing conditions 

violates supermatrix theory. Even when each of the identical columns of B undoes the column 
normalizations of X (so the resulting global priorities are correct), if the other conditions are 
not satisfied, it is not ABP. It is some ad hoc procedure, which could have been avoided by 
not normalizing in the first place. Thus, contrary to Tenet 3, hierarchical composition is not 
just a special case of the supermatrix approach--it is a very special case. 

That hierarchical composition is generally inappropriate is even more evident from the 
following:1 

COROLLARY TO PROPOSITION 1. Criteria weights cannot be imposed exogenously, 
since they must undo the AHP normalizations of the columns of A. Thus, criteria weights are 
usually &pendent upon the alternatives. Therefore, independence is rare; hierarchical 
composition is seldom applicable. 

147 



FINAL REMARKS 

AHP cannot be a credible decision-making aid with subjective relative measurements without 
first establishing its validity with objective absolute measurements (for which answers are 
known independently). We have shown that for concordant A and B matrices, and in contrast 
to widely accepted tenets of ARP--

1. Rank reversal is not such a "fact of life". 

2. Copies of alternatives are legitimate. 

3. Hierarchical composition is applicable only under highly special conditions. 

4. AHP's supermatrix approach is not necessary. As it succeeds by undoing the AHP-
required normalizations of the eigenvectors of alternatives, the same results can be 
obtained more easily by leaving the measurement data unnormalized and using the 
standard weighted-sums approach.6

A subsequent paper at this symposium [8] shows that for discordant A and B matrices the 
supermatrix approach yields arbitrary and ambiguous priorities. Therefore, the supermatrix 
approach is unnecessary for concordant matrices and incorrect for discordant matrices. This 
means that AHP itself is unnecessary under concordance and invalid under discordance. 

ENDNOTFS 

'An early and abridged version of which appeared as [7]. 

2In that paper H&V responded to Belton and Gear [1] [2] and to Dyer and Wendell [3], early 
critics of AHP because of rank reversal due to the addition or deletion of alternatives. 

'The term independent is not clearly defined in the AHP literature. Rather, it is defined 
operationally as characterizing weights that allow the use of hierarchical composition. 
Although the term is controversial, space does not permit further discussion of the issue here. 

'Harker and Vargas mathematically state a related proposition [4, pp. 1398-1399], but offer no 
proof and apparently overlook the significance that eigenvector normalization is being undone. 

5The following assumes that the criteria are equally important to the focus. For criteria that 
are not equally important see the last subsection of the Appendix. 

6We have only illustrated and proved this for two-level hierarchies, but if AHP is defective 
with two levels it Is at least suspect with more levels. 

APPENDIX: PROOF OF PROPOSITION 1 

Nomenclature and the Supermatrix 

Let •X = (x..) be an nxm matrix where x.. is the absolute measurement of Alternative i on 
Criterion j. 'let C. = E.x.. be the sum of tolumn j, R. = E.x.. the sum of Row i, and C = 
E.C. = R = E.R. th! column, row and overall totals. I u.1 .1 I I 

Let A -= (a.) be the nxm matrix whose elements are ai. x../ 'C. i.e., are column normalized. 
Let B = 64 be the mxn matrix whose elements 2re b..0 =' x../R., i.e., are also column 
normalized. tince each of their columns sums to one, A antl B are column stochastic. 
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As A is the matrix of relative scores of the alternatives on the criteria and B the matrix of 
relative scores of the criteria on the alternatives (assuming equally important criteria--an 
assumption dropped later), the square supermatrix, W, is given by 

A 

Multiplying 'W by itself an odd number of times yields 

w2k+1 
0 

[ A (BA) k

0 

B (AB) kl 

0 

For k sufficiently large the columns of B(AB)k become identical as do the columns of A(BA)k. 
From supermatrix theory, each column of B(A13)k is the vector of independent criteria weights 
which, if 'premultiplied by A would yield the overall priorities without resorting to the 
supermatrix, i.e., by hierarchical composition directly. Each column of A(BA)" is the vector 
of overall priorities. Note each column of (BA)k equals each column of B(AB)k,. i.e., is the 
vector of independent criteria weights. 

Determination of B(AB)k 

If B's columns are identical each element b.. = 
Cross multiplying and summing on h yields 3Rx.. 

xand hence 1 B(AB)k, is given by b.. = ../R. 
1 1.1 I identical columns). 

bill' all i and h. Therefore, x../R. = 
R.C.. Using C = R, each ueleiment of B, 

CJ/C: ivhich was to be proved (for B with 

Now assuMe that B's columns are not identical. Then for B(AB)k to have identical columns 
requires that (AB)k have identical columns. Let Gk (AB)k. Then for G" to have identical 
columns each'  column of Gk must be the eigenvector of G, Y, associated with the eigenvalue 
one. ThiS follows from the fact that G and Gk are column stochastic (since A and B are). 
Thus we deed Y such that GY = Y and Gk = (Y Y Y...). In particular, we need to show 
that Y = 4(yi) = (Ri/R), where Ri and R were defined above, is that eigenvector. 

Letting G!-= (g we have from GY = Y 

(Al) = yi, i = 1, n, 

which, as is well known, does not yield a unique solution. If, however, we also impose 

(A2) Eiyi = 1, 

the soluticin to (Al) and (A2) is unique. Now, 

= Ehambhi = Eh(xih/Ch)(xih/19 

and (Al) becomes 

(A3) EiEh(xih/C)(xih/Ribri = y., i = 1, n. 
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Let us try yi = RIR. Then (A3) becomes 

(A4) EjEh(xth/Cd(xih/R)(R/R) = R./R, i = 1, ..., n. 

But the left side of (A4) is 

EiEh(xih/Ch)(xjh/R) = Eh(xih/Ch)(Ch/R) = Eh(xih/R) = R./R. 

Thus (A4) is satisfied, which satisfies (Al). Furthermore, yi = R/12 satisfies (A2). Therefore 
yi =- Ri/R is the unique solution of (Al) and (A2). 

According to supermatrix theoryr the vector of independent criteria weights, w, is any column 
of B(AB)k. But we have just shown (AB)" to be (Y Y Y ...). Thus, w = (wp = BY where 

(A5) w = E1b 1y1 = E1(xii/R1)(12/12.) = Eixu/R = Ci/R = 

Now, Row i of Aw is the overall priority, pi, of Alternative i and is given by 

(A6) EC i/C = Ei(xij/Cp(CIR) = ExJR = R/R, 

from which it is clear that, as was to be shown, the criteria weights, (A5), generated by the 
supermatrix approach undo the normalizations of the columns of X. 

Determination of (BO 

By a similar argument it can be shown directly that the th row of the identical columns of 
(BA)" is given by (A5), which undoes the normalizations of the columns of X. 

Unequal Importance of Criteria 

The foregoing assumed that the criteria are equally important to the focus (overall objective) 
and, therefore, that the criteria weights for B could be obtained directly from X. Suppose, 
however; that the criteria are not equally important. B would be developed in the same way, 
but some columns of X would first have to be resealed to reflect the relative importance of the 
criteria. For instance, suppose Criterion 1 was three times as important as Criterion 2 and that 
Criterion 2 was twice as important as Criterion 3. Then one way of resealing X would be to 
multiply all x.1 by 3 and all xi3 by 1/2. Equivalently, X could be resealed by multiplying all x.2
by 2 and all x1, by 6. ' 
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Table la. 

C C C C 
(I) (3) (3) (2) 

Row Overall Overall 
Sum Priority3 Rank3 Priority4 Rank4 
(5) (6) (7) (9) (9) 

A1 1 9 1 3 14 0.269 3 0.200 3 
A2 9 1 9 1 20 0.385 1 0.286 1 
Al 8 1 4 5 18 0.346 2 0.257 2 

SubTotal 18 11 14 9 52 
A4 4 1 8 5 18 - - 0.257 2 

Total 22 12 22 14 70 

Table lb. 

Overall 
1 C2 C3 C4 Priority3 Rank3

AI 1/18 9/11 1/14 3/9 0.320 3 
A2 9/18 1/11 9/14 1/9 0.336 2 
A3 8/18 1/11 4/14 5/9 0.344 1 

Table lc. 

1 C2 C3 C4 

Overall 
Priority4 Rank4 

A1 1/22 9/12 1/22 3/14 0.264 1 
A2 9/22 1/12 9/22 1/14 0.243 3 
A3 8/22 1/12 4/22 5/14 0.246 2 
A4 4/22 1/12 8/22 5/14 0.246 2 

g1 2 
C3 

w= C4 
AI
A2 
A 

Cl
C2 
C3 

W25 = c4 
A1 
A2 
A3 

C2 C3 C41 A1 A2 A2

0 

1/18 9/11 1/14 3/9 
9/18 1/11 9/14 1/9 
8/18 1/11 4/14 5/9 

1/14 9/20 8/18 
9/14 1/20 1/18 
1/14 9/20 4/18 
3/14 1/20 5/18 

0 

C2 C3 C4 A2 A3 1 A1 

0.346 0.346 0.346 
0 0.212 0.212 0.212 

0.269 0.269 0.269 
0.173 0.173 0.173 

0.269 0.269 0.269 0.269 
0.385 0.385 0.385 0.385 0 
0.346 0.346 0.346 0.346 

i 

0.346 18/52 
b = 0.212 11/52 

0.269 14/52 
0.173 9/52 

Rank 
3 
1 
2 

A = oPRTY 

[1/18 9/11 1/14 3/9 18/52 
9/18 1/11 9/14 1/9 * 11/52 
8/18 1/11 4/14 5/9 14/52 

9/52 

Figure 1 

[0.2691 0.385 
0.346 
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C 1 C 2 C3 
C4 A1 A2 A3 

A4 - 

Cl 1/14 9/20 8/18 4/18 

C2 0 9/14 1/20 1/18 1/18 

C3 
1/14 9/20 4/18 8/18 

w= ,C 3/14 1/20 5/18 5/18 

A1 1/22 9/12 1/22 3/14 
A2 9/22 1/12 9/22 1/14 
A3 8/22 1/12 4/22 5/14 0 
A4 4/22 1/12 8/22 5/14 

1 C2 C3 C4 A1 A2 A3 A4 

Cl 0.314 0.314 0.314 0.314 

Hn 22 0 0.171 
0.314 

0.171 0.171 0.171 
0.314 0.314 0.314 

fl W25 t 4 
1 
A2 

0.200 0.200 
0.286 0.286 

0.200 
0.286 

0.200 
0.286 

0.200 0.200 0.200 0.200 Rank 
3 
1 

0.257 0.257 0.257 0.257 2 

n 0.257 0.257 0.257 0.257 2 

U A b = OPRTY 

! 0 0.314 22/70 1/22 9/12 1/22 3/14 22/70 

• n 0.171 
" 0.314 
0.200 

[ 

= 12/70 
22/70 
14/70 

9/22 
8/22 
4/22 

1/12 
1/12 
1/12 

9/22 
4/22 
8/22 

1/14 
5/14 
5/14 

12/70 
22/70 
14/70 

[0.2001 
= 0.286 

0.257 
0.257 

- 

Figure 2 

! 

1 
1 

) Table 2a. 

Row Overall Overall 

1 71 ) 7 3) 37) 
Sum 
(4) 

Priority3 

(5) 

Rank3 
(6) 

Priority4 
(7) 

Rank4
(8) 

t Al 1 9 8 18 0.450 2 0.305 2 
A2 9 1 9 19 0.475 1 0.322 1 
Al 1 1 1 3 0.075 3 0.051 3 

SubTotal 11 11 18 40 
w A4 9 1 9 19 - - 0.322 1 

t Total 20 12 27 59 

t ...-, 

t,, I 

1 

Table 2b. 

CI C2 C3 

Overall 
Priority) Rank) 

A1 
, A2 

A3 

1/11 
9/11 
1/11 

9/11 
1/11 
1/11 

8/18 
9/18 
1/18 

0.451 
0.470 
0.079 

2 
1 
3 

Table 2c. 

1 C2 C3 

Overall 
Priority4 Rank4 

A1 1/20 9/12 8/27 0.365 1 
A2 9/20 1/12 9/27 0.289 2 
A3 1/20 1/12 1/27 0.057 3 
A4 9/20 1/12 9/27 0.289 2 
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w= 

C1 
C2 
C3 

C2 

A1 1/11 9/11 
A2 9/11 1/11 
A3 1/11 1/11 

C2 

C1 
C2 0 

W25 = c3 
A1 0.450 0.450 
A2 0.475 0.475 
A3 0.075 0.075 

b = [0.275 11/40] 
0.2751 = [11/40 
0.450 18/40 

w= 

Cl 
C2 
c3 

C1 C2 

0 

A1 1/20 9/12 
A2 9/20 1/12 
A 1/20 1/12 
A4 9/20 1/12 

C3 Al A2 A3 

1/18 9/19 1/3 
9/18 1/19 1/3 
8/18 9/19 1/3 

8/18 
9/18 
1/18 

C3 A1 A2 A3 

0.275 0.275 0.275 
0.275 0.275 0.275 
0.450 0.450 0.450 Rank 

0.450 2 
0.475 0 1 
0.075 

A OPRTY 

1/11 9/11 8/18 11/40 

[ 

[0.4501 
9/11 1/11 9/18 * 11/40 = 0.475 
1/11 1/11 1/18 18/40 0.075 

Figure 3 

C3 A1 A2 A3 A4 

1/18 9/19 1/3 9/19 
9/18 1/19 1/3 1/19 
8/18 9/19 1/3 9/19 

8/27 
9/27 
1/27 
9/27 

0 

1 C2 C3 A1 A2 A3 A4 

gl2 
C 

w25 A1 0.305 

0 

0.305 
A2 0.322 0.322 
A3 0.051 0.051 
A4 0.322 0.322 

20/591 10.339] b = 0.203 12/59 
[27/59 0.458 

0.339 0.339 0.339 0.339 
0.203 0.203 0.203 0.203 
0.458 0.458 0.458 0.458 

0.305 
0.322 
0.051 
0.322 

I1/20 9/20 
1/20 
9/20 

0 

Wank 
2 
1 
3 
1 

A b = OPRTY 

9/12 8/27 
1/12 9/27 
1/12 1/27 
1.12 9/27 

Figure 4 

120/59 0.305 
20/59 = 0.322 
27/59 0.051 

0.322 
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4. Multiplicative AHP 

1 
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