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Abstract: We develop a metric for ratio scales and explore the notion of compatibility of two sets 

of measurements of a set of objects or properties on a ratio scale. We briefly address Arrow's 
impossibility theorem. We maintain that it is not as impossible as claimed when, as in reality, 
a certain degree of inconsistency and incompatibility are allowed. 
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1. INTRODUCTION [I] 

A scale is a triple: a set of objects or properties, a set of numbers and a mapping from 
the objects to the numbers. If the number of objects is n, the scale associated with them is an 
n-vector. A set of numbers belongs to a ratio scale if it is invariant under a similarity 
transformation (multiplication by a positive number). It follows that all the points on a ray from 
an origin in R: belong to the same ratio scale. Each point on the ray is an n-tuple. A problem 
that often arises in practice is: Given two n-tuples w = it',,) and u = (up u,), which 
represent ;two sets of measurements on a ratio scale of the same set of alternatives on a single 
property how close are these measurements? A second problem is that we have known standard 
measurements of the symptoms of a disease on several properties. These single readings on each 
property are given by an n-tuple p = p,) and a patient arrives whose readings are q = 

..., ), how do we decide whether the patient is likely to have the disease? Examples of 
two metrics which have been used to determine closeness on the same property are the Euclidean 

metric (E (wi-u1)2)1' and the Hilbert metric log [ max(wlui)/min(w/ui)]. The first of these 
,71 

metrics ignores that wand u belong to a ratio scale and the second ignores all but the maximum 
and minimum values. We have tested both these metrics and neither has been found to be 
sufficiently sensitive to enable a clear decision. What we need to consider is all the numbers 
and their ratios. In performing fine measurements one can hardly object to seeking a thorough 
metric bard on all the ratios. 

This note examines the idea of deriving a valuation index or metric for a better 
comparison of numbers when they belong to a ratio scale than we have So far. 

2. A RATIO SCALE METRIC - THE COMPATIBILITY OF 
MEASUREMENTS 

Given the vector iv = w) where all the wi belong to the same scale, we consider 
the matrix of all possible ratios A= (a, j)-=- (w,Av). This matrix is reciprocal, that is aji =
The Hadamard product of a reciprocal matrix A and its transpose A T is given by 
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,w„Avi waiwa, ,wiwa wiwa, \ I, I 
The sum of the elements of a matrix A can be written as erAe. In particular erAoA re=n2. 

If we assume that two vectors w = wn) and .0 = (up whose coordinates 
u w 

are measured on the same ratio scale, differ by a perturbation matrix E = (cu) so that =_ZE 
u w v 

w. U. 
and if their corresponding matrices are A.=(.2.) and B =(2), the Hadamard product we want 

it U. 

"  wi u 
is AoBT = (eu). We are concerned with the closeness of erA0Bre = E to its minimum 

Wi  Ui

a 
value n2 or with the closeness of the normalized vectors wi/E iv; and /4/it u; to each other. 

i=1 t.1 
It is easy to prove the first three theorems below. 

w. 
Theorem 1: If A = then A = vw, v=(—.,1  ,w = w„) 

w. WI wn

T • Corollary: If E w, = 1 then e Ae =e T v 
1=1 

n I Theorem 2: erile = ervwe = E - • E • p.) iv; it) 
We define compatibility between two ratio scales w and u as c(w,u) = eTA0Bre. 
Ratio scales have no zero value but only a zero origin. The following theorem is 

analogous to the first axiom of a metric. 

Theorem 3: c(w,u) = n3 if and only if w=u (1) 

Proof If A=B then AT=BT and erA0Bre=n2 or c(w,u) = n2. Conversely, assume that c(w,u) 
= n2. The sum of the elements of the reciprocal matrix A 0 Br can be represented in pairs of 
terms of the convex form x + 1/x each of which has a minimum value of 2. Since the sum of 
the elements is equal to n2, each term x + llx must be equal to 2 which is attained if and only 

w. u. w. U. 
if x= I. If we let x=2. -1, it follows that _=...± for alit and j and hence w = u. 

wf ui it.;; U. 
I 

A special case of this theorem is that of n = 1, in other words the comparison of two 
ratio scales rests on the comparison of a single measurement from each. If we define d(w,u) = 
log c(w,u) we obtain the first axiom of an ordinary metric in geometry. 

One can generate a relative ratio scale when a set of attributes are being compared in a 
test. What should one do when there is only one attribute and how do we compare two 
measurements of the same attribute. There are two ways to obtain measurement for a single 
attribute. One is through relative comparisons with a known ideal state of that attribute obtained 
from memory. This is the only way to create measurement when one deals with an intangible 
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attribute. The other, useful mostly for physical measurement, is to create a scale with a unit for 
measuring that attribute. It is a special case of relative measurement. Physical measurement 
is related to the idea of distance and more abstractly to a metric and geometry. Measurement 
on a physical scale may or may not, belong to a ratio scale. If it does, one can sometimes 
directly forrn ratios of such measurements on such a scale or alternatively use the measurements 
to develop relative measurements or create new ratios from them through judgment. 
Alternatively one can take the differences of two measurements on a difference scale each of 
whose readings is itself is the logarithm of a ratio scale measurement. These are the two 
possible ways to create physical measurement that is compatible with the fundamental process 
of relative measurement. 

One may speculate that if reciprocal comparisons are so intrinsic to the brain. We 
geometric structure based on them should in principle be the most general to include all known 
geometries as a special case because we can only understand geometries using understanding 
fundamentally based on paired comparisons. 

i „ 
Lemma: D aki ai)(r bi) ai, 0, = 1,...,n. 

1L-1 I.1 
Proof Note that each term on the right is positive and that the left side is included in the right 
side. 

Theorem 4i c(w,v) c(vv,u) c(u,v) 
Proof eTA,0 c re = eTA 0. Br 0 B 0 c re < g el 0 Bre erB 0 nT e = c(w,u) c(u,v) having used 
the lemma.' 

We rote that if we have to compare a single reading from a ratio scale with a standard 
value on the same scale we simply take their ratio for the Hadamard product of their two single 
element matrices. Thus if one reading is p and the other is q we have c(p,q) = p/q and 

d(p,q) = log c(p,q) = log p/q. 
If P and Q are vectors defined by a set of coordinates in cartesian space, we need to use one of 
the many prpsible norms for that vector to form the ratio p/q. 

The t'transformation d(w,u) = log c(w,u) for n = 1 satisfies the two axioms of a metric 
I) given in Theorem 3 with n = 1 and 2) given in Theorem 4. In addition, it is easy to show 
that 3) d(w)u) = d(u,w), 4) d(w,u) is a continuous function of w and u, 5) if u lies on a line 
between w and v then d(w,v) = d(w,u) + d(w,v) (the geodesic property), and 6) d(ezw,au) = 
d(w,u), a 0, for all w and u (invariance with respect to the ratio scale property). A second 
metric d'(w14) = k d(w,u) for some k > 0 also satisfies all these conditions. The space of all 
w's and u'sendowed with the metric d(w,u) is a hyperbolic space [2]. 

What is a good bound to place on compatibility as defined by eTA013Te? From dealing 
with the measurement of tolerable inconsistency we have developed the argument that one can 
tolerate perturbations that are one order of magnitude or less when compared with the original 
number. Perturbations that are as large (of the same order of magnitude) as the number itself 
are unacceptable. Thus an admissible bound for compatibility can be set at 1.100. It is in 
accord with the idea that a 10% deviation is at the upper end of acceptability. 
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3. COMPATIBILITY AND CONSISTENCY 

Consistency is concerned with the compatibility of a matrix of the ratios constructed from 
a principal right eigenvector with the matrix of judgments from which it is derived. 
Compatibility is concerned with two different vectors. If the matrix of judgments is inconsistent, 
is it compatible with the matrix of eigenvector ratios? The following theorem and the table 
following it show that there is a relation between consistency and compatibility. Comparison 
of the two indices suggests that for the cases of 3-5 alternatives the Compatibility Index should 
have a smaller value than 1.1. 

Let W = (wily) be the matrix of ratios of the principal right eigenvector w = (wi sio 
of the positive reciprocal matrix A and X,„“, be the corresponding principal eigenvector and let 

E we = 1. We define the Compatibility Index (S.1.) of a matrix of judgrbents and the matrix 

of derived eigenvector ratios as S.I. = -1 e TA0W Te. n 2 

Theorem 5: ___1 e TA, wTe = Xmax 

n 2 

Proof: From Aw = X w we have 

E vv./ =
j I 

Xmaxwi

and 

111. X n n-e T Ao wTe = E E , max 
a. - = I

n 2 2 1 1.1 
12 i=

Number of 
alternatives (n) 

Compatibility 
Index (S.1.) XI tat 

X
C. I. = 111" 

-n C.' 
n-1 I?.I. 

3 1.017 3.052 0.026 0.52 0.05 
4 1.053 4.214 0.071 0.89 .0.08 
5 1.089 5.444 0.111 1.11 0.10 
6 1.104 6.625 0.125 1.25 0.10 
7 1.116 7.810 0.135 1.35 0.10 
8 1.123 8.980 0.140 1.40 0.10 
9 1.129 10.160 0.145 1.45 0.10 

10 1.134 11.341 0.149 1.49 0.10 
11 1.137 12.510 0.151 1.51 0.10 
12 1.141 13.694 0.154 1.54 0.10 
13 1.144 14.872 0.156 1.56 0.10 
14 1.146 16.041 0.157 1.57 0.10 
15 1.147 17.212 0.158 1.58 0.10 
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cm 
cm
cm

Consider ttie Hadamard product: 

1 2 4 

. EXAMPLES 

1 1/3 1/5 1 2/3 4/5 
cm 1/2 1 2 3 1 3/5 3/2 1 6/5 

1/4 1/2 1 5 5/3 1 5/4 5/6 1 

We have 1 T T _e /10B e 4 = 1.028 
n 2 9 

The ratio scale 

[ 3 1
' 

- '6

vectors corresponding to the two matrices 

r which by this measure are considered close. 

[4 2 17, 7, 1 are and 

4.6 4.6' 6.6 

1 2 4 1 1/3 1/9 1 2/3 4/9 
Again 1/2 1 2 0 3 1 1/3 3/2 1 2/3 

C 1/4 1/2 1 9 3 1 9/4 3/2 1 

0 
0 from which we have 1 T _e A0B 

n 2 

10-
316 1.114 T = e = 

9 

The ratio scale vectors in this case are ±± 2 1 
7 ' 7' 7 

[ 9 T and 
13' 

3 _1 
13' 13 

whose closeness 
may be considered as a borderline case. 

An example of a large perturbation of a matrix is: 

1 2 4 1 1/9 1 1 2/9 4 
1/2 1 2 ° 9 1 9 9/2 1 18 
1/4 1/2 1 1 1/9 1 1/4 1/18 1 

from which we have eTA. BTe = 30.027 = 3.336 
9 

The ratio scale vectors of the two matrices are respectively 
4 2 1 and 1 9 1 

17' 7' 7 11' 11 
which by any measure are not close. e also no e that from 

1 2 4 1 2 4 1 4 16 
1/2 1 2 1/2 1 2 1/4 1 4 
1/4 1/2 1 1/4 1/2 1 1/16 1/4 1 
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271 
16 

we have erA0Bre _  9 
= 3.063 

The two vectors of A and B are 

which are not close. 
Finally, consider the following two cases of 4 x 4 matrices constructed to test 

compatibility with the vector [.05 .15 .30 .501T of: 
(a) once to a close vector [.08 .22 .25 .451T

1 .05 .05 .05 
.15 .30 .50 

.15 .15 .15 1 

.05 .30 .50 

.30 .30 1 .30 

.05 .15 .50 

.50 .50 .50 1 

.05 .15 .30 

with 

4 2 1 T and I 1:1 , 4 T
[ 7 , 7  1-7 , 

7 7 

1 .22 .25 .45 
.08 .08 .08 

.08 1 .25 .45

.22 .22 .22 

.08 .22 .45 1 

.25 .25 .25 

.08 .22 .25 

.45 .45 .45 

eTA0Bre - 17'36 - 1.085 
16 

1 

which is tolerable; and 
(b) once to a not so close vector [ 03 .25 .10 .621T. 

1 .05 .05 .05 
.15 .30 .50 

.15 1 .15 .15 

.25 .30 .50 

.30 .30 1 .30 

.05 .15 .50 

.50 .50 .50 

.05 .15 .30 

and 

which is not tolerable. 

1 

.75 .10 .62 1 

.03 .03 .03 
.03 1 .10 .62 
.25 .25 .25 
.03 .25 1 .62 
.10 .10 .10 
.03 .25 AO 1 
.62 .62 .62 

eTAoy e 22.99 = 1.437 
16 

1.00 0.92 0.52 0.56 

1.09 1.00 0.57 0.61 

1.92 1.76 1.00 1.08 

1.77 1.63 0.93 1.00 

1.00 2.77 0.55 2.07 
0.36 1.00 0.20 0.74 
1.80 5.00 1.00 3.72 
0.48 1.34 0.27 1.00 

5. THE CASE OF SEVERAL RATIO SCALES 

Consider now the case of two vectors, p = (pl, p„) and q = (q1, qn) each of 
which consists of single readings each on one of n scales as in the case of a patient who takes 
several tests measured in different ways. How should we judge how close are p and (I? Here 
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Pr r n ,P; 
we first consider the ratios — . We consider the sum 1 —  k— +—) and require that it be 

qi 2n j..I 91 P, 
C\ close to one. If on the other hand we can determine through paired comparisons that the 

properties have different priorities given by a normalized vector a = (as, ..., cr,), then we 

require that —1 E  a(—Pi + 1±) be close to one. If we have multiple readings on each property, 
2 qi

we could use the same analysis for each as in the previous discussion for a single attribute and 
add the outcomes and require the total not to exceed 1.10. For a mixed vector with several 
readings each on a different property some of which are measured on the same ratio scale, we 
compare these readings as in the previous section. Finally we add the different indices derived 
for the different ratio scales and take their average for an overall index which should be no more 
than 1.10. 

The foregoing discussion assumes that the measurements are independent of one another. 
If there is dependence among the factors it can be captured in part through ce; above. 
Measurements from several different ratio scales may be multiplied to form a single new ratio 
scale. This product may be compared with a similar product by forming the expression 

ql q2 qn 

1 [Pi  P2  + 

2 Pi P2 Pn

 qt q2 Qs]

which should be close to one. 
( 

) 6. ON THE POSSIBILITY OF ARROW'S IMPOSSIBILITY 
( 1 
t, The economist Kenneth Arrow [3] in his work on the compatibility of a social utility 

function with individual utilities concluded that it is impossible that the ordering of alternatives 
by the group would always be consistent with the ordering of each of the participating 
individuals'. His early work in proving this theorem is based on ordinal order requiring the 
assumption: of transitivity of preferences. He and others have assumed that in fact their approach 
to the question coincides with how things actually are in the real world and in the world of logic 
and mathematics. This is not so. As a consequence of Arrow's work some people have 
concluded that dictatorships are the logical outcome and that democracy is unnatural. I will 
outline why this impossibility theorem can be misleading because of the assumptions it makes 
and because of the method it uses to arrive at the conclusion. 

The way to analyze how individuals develop expectations about the compatibility of their 
rankings with that of a group to which they provide input is by assuming that each individual 
does carry out a complete ranking of the alternatives and compares it with the group ranking, 
originally proposed. Arrows method of ordinal ranking is not the only one, nor is it the most 
natural. Ranking can be made on a cardinal scale so that meaningful numbers are assigned to 
the alternatives rather than ordinals. There are two well established ways to create a cardinal 
rank order One of these is an ordering on a ratio scale which leads to the question of 
consistency, its measurement, allowing for inconsistency and deciding when a ranking is valid 
and when it is unjustified by the judgments. By allowing inconsistency for an individual or a 
group to adjust their judgments and incompatibility up to a certain tolerance level, it is possible 
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that all individual's preferences would agree with group decision more often than Arrow's theory 
suggests. We are thus again freed of the idea that dictatorships are necessary. 

Here we have the problem of the compatibility of JAM/ e, i = 1, n where A is the 
group derived scale matrix and A; are the individual matrices. The matrix A may not coincide 
with A, but it can be sufficiently close and hence fall within a tolerable limit of each of them. 
In that case the individual could find the group ranking compatible with their individual rankings 
and need not dissent. 
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