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Abstract: It has long been known for example from the works of Henri Poincare that inversion 
of ponds with respect to the unit circle can be used to interpret hyperbolic geometry. In this paper 
we note that inversion is simply the reciprocal relation in paired comparisons. We then argue that 
to compare the. intensities of sensations which we all do consciously and unconsciously we need 

fl a metric. A metric is associated with a geometry. The process of reciprocal comparisons is the 
minds ,tool for creating a metric across the senses. We refer to Descartes observation that 
synthesis of data from the several senses leads to a unified Euclidean metric and argue for 
replacing it with the hyperbolic metric. 
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O .1. Introduction 
0 Inversion is a process in which a point A inside the unit sphere is associated with a pointA 

outside which falls on the ray from the center 0 of the sphere through A, such that the product 
o of the distances OA and OA' from 0 is equal to one. As one point moves on the ray towards 

) the boundary so does the other, and as A moves towards 0, A moves towards infinity. 
) Inversion is d process for representing hyperbolic geometry in the Euclidean space. The purpose 

of this paperlis 1) to show that inversion arises from reciprocal paired comparisons; 2) that both 
discrete and 'continuous reciprocal paired comparisons give rise to a ratio scale metric; and 3) 
that paired comparisons, a common process associated with sensation and thought yield 
uniformly across the senses an identical (ratio scale) metric associated with hyperbolic geometry. 

t. Descartes ollserved long ago that geometric order is common to and transcends vision, hearing 

I E. and feeling. Overwhelming evidence from experimental psychology indicates that blind people 
and also people who are both deaf and blind can order the world as sighted people do but with 
greater' effort. Because the ideas of this paper relate the mind to the real world, our approach 
is directed towards highlighting evidence regarding the uniformity of our sensations, as they map 

L_ into a singleihyperbolic structure arising from our instinctive inclination to make comparisons. 
It is known that both space-time physics and visual sensation give rise to a hyperbolic metric 
[15]. 

People have an ability to make comparisons to estimate relative magnitudes even when 
they are unschooled in numbers and arithmetic. In fact, deriving measurements from 
comparisonsi precedes measuring on uniform scales with a conveniently chosen unit. Henri 
Lebesgue [13] observed: 

It would seem that the principle of economy would always require that we 
evaluate ratios directly and not as ratios of measurements. However, in practice, 
all lengths are measured in meters, all angles in degrees, etc.; that is we employ 
auxiliary units and, as it seems, with only the disadvantage of having two 
measurements to make instead of one. Sometimes, this is because of 
experimental difficulties or impossibilities that prevent the direct comparison of 
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lengths or angles. But there is also another reason. 
In geometrical problems, one needs to compare two lengths, for example, 

and only those two. It is quite different in practice when one encounters a 
hundred lengths and may expect to have to compare these lengths two at a time 
in all possible manners. Thus it is desirable and economical procedure to 
measure each new length. One single measurement for each length, made as 
precisely as possible, gives the ratio of the length in question to each other 
length. This explains the fact that, in practice, comparisons are never, or almost 
never, made directly but through comparisons with a standard scale. 

But we do not always have the needed standard scales and must learn how to do comparisons 
particularly when one does not have a hundred, but only a few things to measure. 

Our purpose here is to show how relative comparisons work and relate them to our 
perception of geometry. Figure 1 is an attempt to represent how the brain processes information 
to create "understanding." It show& that creating IcnoWledge is a complex brain process that is 
characteristic of our own type of thinking. Other living forms, particularly invertebrates and 
plants have their own way of storing their kind of information, which is likely to be different 
than ours. 
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The need for close coordination between the magnitudes of stimuli and those of responses 
can perhaps be better understood if we are able to identify the functions of the central nervous 
system provided for us by the French molecular biologist and noble laureate Jacques Monod 
[18]. 
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• Coordination of neuromotor activity with sense data; 
• Providing (innate) preprogrammed responses to particular stimuli; 
• To search for, analyze, screen, abstract and synthesize information about the 

environment into factors suited to the chemical and biological performance of the 
organism; 

• To judge the priority of events in terms of their relevance to performance by grouping 
thern in hierarchic levels of degrees of influence and using them to expand the innate 
programs with their knowledge; 

• To project (in higher vertebrates) and extend the process of judgment and priority to 
hypothetical areas to create stimuli and envision the role (courses of action) of the 
organism in diverse environments. 

In the remainder of the paper we discuss comparisons and their importance in biology, 
and in particular reciprocal comparisons and show how they correspond to inversion. We 
formalize the process of making discrete reciprocal comparisons from observation and judgment 
and show hoW to derive a ratio scale from them, illustrating it with an example from optics. 
We then give a generalization of domparisons to the continuous case of neural firing and show 
how these int turn give rise to a ratio scale response function. In section 7 we are concerned 
with how the idea of a metric develops naturally from the totality of impressions one individual 
gathers and show in the following section the congruence of structures derived through different 
senses. In section 9 we give a few of the known highlights about inversion and hyperbolic 
geometry. 

2. On The Making Of Comparisons in Measurement 
Nature exhibits magnitudes in the form of variations in the intensity of properties. We 

invent scales, to measure these variations. Our scales lend to be based on equal multiples and 
fractions of an arbitrarily chosen unit. The numeral outcome is a special kind of information 
that needs to be interpreted in some measured and proportional way in terms of our values to 
determine what exactly it means. The assessment of measurement from scales in terms of our 
value systein itself requires a subjective scale to give it precise content. This type of 
measurement we do consciously with thought. But much more unconsciously, our bodies, for 
example, secrete chemicals in precise amounts to respond to physical needs and also to control 
the expenditure of physical and nervous energy. 'Survival and chemical balance necessitate 
appropriate and proportional response. We need magnitudes to respond proportionately to 
stimuli; hence the idea of ratio scales, invariant under a similarity transformation, that is under 
multiplication by a positive constant. Ratio scales represent proportionality and are essential 
for muscula4 control and for most bodily actions and reactions. ,Ratio scales are needed to 
perceive forms endowing them with symmetry, balance, beauty and other attributes that make 
it possible to distinguish among them. Physics relies on ratio scales to describe natural law. 

We use comparisons to create ratio magnitudes we spoke of earlier. Comparisons are 
basic in the functioning of the brain. "Our brain is eonstantly comparing the differences between 
the angle froim each eye to the sighted object, using feedback from the eye muscles. This is 
what allows a baseball pitcher to put a ball over the plate with such accuracy" [31]. "It would 
therefore beklifficult to imagine that there is no simple and obvious relationship between the 
physical characteristics of the object being viewed and the color that the brain assigns to it. 
Indeed therelis' It lie g in a comparison of the wavelength composition of the light reflected from1 a surface and the wavelength composition of the light reflected from surrounding surfaces ... 
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color therefore is a comparison of comparisons [32]." 
We are concerned with the characterization of the spaces of response for all the senses. 

Central to this concern is that each of the senses involves intensities of stimuli received and 
responses to these stimuli. It is essential that with each sense there is associated a metric that 
enables making distinctions between magnitudes of sensations. Because the brain itself must 
process and synthesize simultaneously a multiplicity of information from each of the senses and 
from all the senses together, it is reasonable to assume that the metric of response is the same 
for all the senses and coincides with the metric used by the brain to compare stimuli from 
different senses to determine its response. The existence of a metric is characteristic of a space 
and a geometry. Thus response to sensation has an underlying mathematical structure, i.e. a 
geometry. It is easy to see why Descartes believed that all these spaces are the same [4]. That 
was a brilliant observation, except it is not Euclidean but hyperbolic geometry as we show in 
this paper. 

3. Reciprocal Comparisons 
Magnitude comparison between two objects, on a common property, is established 

by using the smaller (lesser) object as a unit of measurement and estimating the larger (greater) 
one as a multiple of that unit. The smaller object then has the reciprocal value of the larger one. 
It is essential that the smaller or lesser object be first used to estimate the magnitude of the 
larger object in order to determine the reciprocal value for the smaller one. If the larger object 
is to serve as the unit, it must be decomposed by using the smaller object as the unit. This is 
the abstract principle underlying all reciprocal comparisons. 

The reciprocal relation between the two objects has the form y= 1/x from which we have 
the symmetric relation xy=1 known as inversion. It assumes that the magnitudes x and y can 
be established with regard to a third magnitude, which has an arbitrary unit value. This idea 
plays a central role in Poincare's model of noneuclidean geometry. We note that when x is 
allowed to vary continuously over the real numbers, y=1/x gives rise to a hyperbola in the 
plane; more generally it specifies a ratio in a potential field between two points A and B so that 
A has a potential 1/x from B and B a potential 1/y from A. 

Reciprocal comparisons are of two kinds: discrete and continuous. As we shall see later, 
both types of comparisons give rise to numbers that belong to a ratio scale. We use discrete 
comparisons to determine relative magnitudes arising from the effect of a natural law. For 
example, we make discrete comparisons to compare the relative brightness of objects. We use 
continuous comparisons to grasp relations in a form such as the shapes of objects or patterns of 
sound. We can make continuous comparisons each instant of time when we use the eye. 
Repetition over time gives it completeness and duration. Unlike the eye, the ear deals with one 
stimulus at each instant of time or perhaps with a small set of stimuli. The eye uses local 
patterns as generators interwoven or connected to estimate a. global pattern. 

Comparisons require a certain kind of information. When actual numbers are available, 
they may be used to estimate relative measurement. When there are no scales, one must use 
judgment to make the estimate. Judgment relies on the ability of the brain to respond accurately 
to a stimulus of varying intensities. Judgment precedes the existence of a scale. For accuracy, 
judgment must be confined to a narrow range of discrimination among intensities. For wider 
ranges one needs to cluster homogeneous elements together and include a common element to 
act as a pivot from one cluster to the next. A mathematical theory known as the Analytic 
Hierarchy Process with wide ranging applications which involves the use of both discrete and 
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continuous comparisons revolves around deriving ratio scales from reciprocal comparisons. In 
the next sections we describe this process in greater detail. 
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4. The Construction of Ratio`Metrics From Comparisons 
The Analytic Hierarchy Process (AHP) is a method of breaking down a complex situation 

into its component parts, arranging these parts, or variables, into a hierarchic order, assigning 
numerical values to subjective judgments on the relative importance of each variable, and 
synthesizing the judgments to determine the overall priorities of the variables. The AHP also 
provides am effective structure for group decision making by imposing a discipline on the 
group's thought processes. The necessity of assigning a numerical value to each variable of the 
problem helps decision makers to maintain cohesive thought patterns and to reach a conclusion. 
This structure lends itself to those forecasting problems which, require expert opinions regarding 
the levels of influence of quantitative and/or qualitative factors. The AHP has been applied 
successfully to a variety of problems: planning [23], prioritization [25], resource allocation, 
conflict resolution [24], decision making, and forecasting or prediction [26]. The process has 
three majorcomponents: 

1. The problem is decomposed into factors or elements. Elements are grouped on 
different levels. Each element is, in turn, decomposed into another set of elements. The 
'process forming a chain or hierarchy continues to the lowest level of the hierarchy. The 
hierarchy dyes not need to be complete; that is, an element in a given level does not have to 
fUnction as 'criterion for all the elements in the level below. Thus a given hierarchy can be 
divided into' subhierarchies having only a common topmost element. 

2. The degree of relative importance of the elements at a particular level in terms of each 
parent element in a preceding level is measured by a procedure of paired comparisons carried 
6ut by the decision maker(s) and resulting in a matrix of paired comparisons. 

3. To compute the priorities of the elements in each matrix of paired comparisons, we 
solve the principal eigenvalue problem of each matrix. The resulting vector of "local" priorities 
is then weighted by the weight of the higher-level element used as the criterion in making the 
pairwise comparisons for the matrix in question. This yields the global priorities of the 
elements. The global priorities of an element in a given level are added to yield its composite 
priority. The procedure is repeated by moving downward along the hierarchy, computing the 
global weight of each element at every level, and using it to determine composite weights of 
elements inisucceeding levels. 

A brief mathematical description of the AHP will be given in the following paragraphs. 
For a detailed description of the method, see [25]. 

The AHP has four axioms, 1) reciprocal, 2) homogeneous, 3) hierarchic or feedback 
dependence and 4) expectations about validity of the model and about the derived rank order. 

Assume that one is given n stones, A /, A„, with known weights wi, w„, 
respectivelY, and suppose that a matrix of pairwise ratios is formed whose rows give the ratios 
of the weights of each stone with respect to all others. Thus one has the equation: 
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where A has been multiplied on the sight by the vector of weights w. The result of this 
multiplication is nw. Thus, to recover the scale from the matrix of ratios, it is necessary to 
solve the problem An' = nw or (A - nI)w = 0. This is a system of homogeneous linear 
equations. It has a nontrivial solution if and only if the determinant of A-nI vanishes, that is, 
n is an eigenvalue of A. Now A has unit rank since every row is a constant multiple of the first 
row. Thus all its eigenvalues except one are zero. The sum of the eigenvalues of a matrix is 
equal to its trace, the sum of its diagonal elements, and in this case the trace of A is equal to 
/Z. Thus /1 is an eigenvalue of A, and one has a nontrivial solution. The solution consists of 
positive entries and is unique to within a multiplicative constant. 

To make w unique, its entries can be normalized by dividing by their sum. Thus, given 
the comparison matrix, the scale can be recovered. In this case the solution is any column of 
A normalized. Notice that in A the reciprocal property a1 = 1/au holds; thus, also all -= 1. 
Another property of A is that it is consistent: its entries satisfy the condition am = aulau. Thus 
the entire matrix can be constructed from a set of n elements which form a chain across the rows 
and columns. 

In the general case, assume one is given rt stones, Ai, A„, but that this time the 
weights w1, w„ are unknown. The precise value of wi/wi cannot be given, but instead only 
an estimate of it in the form of judgment. For the moment, consider an estimate of these values 
by an expert who is assumed to make small perturbations of the coefficients. This implies small 
perturbations of the eigenvalues. The problem now becomes A'w' = X„„zw' where X  is the 
largest eigenvalue of A'. To simplify the notation we shall continue to write An' =
where A is the matrix of pairwise comparisons. The problem now is: "How good is the estimate 
of w?" Notice that if w is obtained by solving this problem, the matrix whose entries are w1/w, 
is a consistent matrix. It is a consistent estimate of the matrix A. A itself need not be 
consistent. In fact, the entries of A need not even be transitive; i.e., A, may be preferred to A2
and A2 to A3 but A3 may be preferred to A 1 . What we would like is a measure of the error due 
to inconsistency. It turns out that A is consistent if and only if X = n and that we always 
have X n. 

Since small changes in au imply a small change in X„ , the deviation of the latter from 
II is a deviation from consistency and can be represented by (X„. - n)I(n-1), which is called the 
consistency index (CI). When the consistency index has been calculated, the result is compared 
with those of the same index of a randomly generated reciprocal matrix from the scale 1 to 9, 
with reciprocal requirements forced. This index is called the random index (R.I.). The 
following gives the order of the matrix n, and the corresponding average R.I. as calculated from 
hundreds of thousands of randomly generated matrices: 
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1 2 3 4 5 6 7 8 9 10 

Random Consistency Index (R.I.) 0 0 .52 .89 1.11 1.25 1.35 1.40 1.45 1.49 

The ratio of C.I. to the average R.I. for the same order matrix is called the consistency 
ratio (C.R.). A consistency ratio of 0.10 or less is positive evidence for informed judgment. 

The relations aji = 1/au and au = 1 are preserved in these matrices to improve 
consistency. i The reason for this is that if stone #1 is estimated to be k times heavier than stone 
#2, common sense requires that stone, #2 be estimated to be 1/k times the weight of the first. 
If the consistency ratio is significantly small, the estimates are accepted; otherwise, an attempt 
is made to improve consistency by obtaining additional information. What contributes to the 
consistency ,of a judgment are (1) the homogeneity of the elements in a group, that is, not 
comparing a grain of sand with a mountain; (2) the number of elements in the group - to 
improve consistency we agree with the psychological experiments, which we can justify 
mathematically, that an individual cannot compare simultaneously more than seven objects (plus 
or minus two) without becoming more and more inconsistent [17]; and (3) the knowledge of the 
analyst about the problem under study. 

For quantifying judgments, a fundamental scale is used with values ranging from 1 to 9 
as shown in! Table 1. There are several reasons for choosing such a scale [25]: 
(1)The qualitative distinctions are meaningful in practice and have an element of precision when 
the items being compaled are of the same order of magnitude or close together with regard to 
the property used to make the comparison. 
(2) The ability to make qualitative distinctions is well represented by five attributes: equal, 
moderate, 4rong, very strong, and "extreme and interpolations between them when desired. 
(3) The consistency limit of 7 + 2 items in simultaneous comparisons suggests that if 7 + 2 

4 elements are compared and if they are all slightly different from one Another, a nine point scale 
would be needed to distinguish among these differences. 

We 'note that the numerical values used in the scale are absolute rather than ordinal 
numbers. if numbers larger than those appearing in the scale are needed, the hierarchy itself 
is used to Cluster the elements, and to compare the clusters before comparing their elements. 
Thus we assume that the factors being compared fall within the same order of magnitude implied 
by the scald. 

5. An ExaMple of Reciprocal Comparisons and Derived Measurement 
Liglit radiation and light reflection depend on the source plus other factors, such as 

scattering and interference, and on the nature of the background. If one uses a point source of 
light, that turce would radiate or diffuse luminance uniformly in all directions according to the 
inverse square law. Indeed some objects would rediffuse the light falling on them, rather than 
reflect it, and something perhaps closer to an inverse fourth power could apply. However, if 
the source is a directed beam confined to a narrow cone over the desired range, the objects 
would reflect the light according to the inverse square of the distance. An intervening object 
reflects the beam at an angle equal to the angle of incidence. 
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Table 1 

Intensity of Definition 
Importance 

Explanation 

1 Equal Importance 
3 Moderate importance 

Strong importance 

Very strong or demonstrated 
importance 

9 Extreme importance 

2,4,6,8 Intermediate Importance 

Reciprocals If activity i has one of the above 
of above nonzero numbers assigned to it when 

compared with activity j, then j has the 
reciprocal value when compared with i 

Two activities contribute equally, to the objective 

Experience and judgment slightly favor one 
activity over another 
Experience and judgment strongly favor one 
activity over another 
An activity is favored very strongly over 
another; its dominance demonstrated in practice 
The evidence favoring one activity over another 
is of the highest possible order of affirmation 

When one hesitates between the corresponding 
upper and lower values. 
A reasonable assumption 

Rationals Ratios arising from the scale If consistency were to be forced by obtaining n 
numerical values to span the matrix 

Four identical chairs were placed on a line from a light source at the distances of 9, 15, 
21, and 28 yards. The purpose was to see if one could stand by the light and look at the chairs 
and compare their relative brightness in pairs, fill in the judgment matrix and obtain a 
relationship between the dhairs and their distance from the light source. This experiment was 
repeated a number of times each involving a judgment matrix for which the relative brightness 
of the chairs was derived. 

Let Cp C2, C3, C 4 stand for the chairs, arranged in a straight line, leading away from the 
light. Judgments are obtained from an individual who stands by the light source and is asked, 
for example, tow strongly brighter is chair C 2 than chair C3?" He would then give one of the 
numbers for the comparisons described in the table and each judgment is entered in the 
appropriate position in the matrix. By convention, the comparison of strength is always of an 
activity appearing in the column on the left against an activity appearing in the row on top. Two 
sets of people provided the judgments for each of the following two matrices: 

Brightness CI C 2 c r Brightness Cl C3 C 4

C1 1 5 6 7 1 4, 6 7 
C, 1/5 1 4 6 1/4 1 3 4 
C3 1/6 1/4 1 4 C3 1/6 1/3 1 2 
C4 1/7 1/6 1/4 1 C4 1/7 1/4 1/2 1 

The relat've brightness of the chairs expressed by the principal eigenvectors 
(approximately) satisfies the inverse square law of optics. First we have: 
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rTh 

Relative brightness eigenvector Relative brightness eigenvector 
(1st Trial) (2nd Trial) 

0.61 0.62 
0.24 0.22 

(Th 0.10 0.10 
fl  0.05 0.06 

The consistekicy of these judgments are measured by the principal eigenvalue of the reciprocal 
matrix as follows: 

fl x,ax = 4.1 X„,,„ = 4.39 
Cl C.I. = 0.03 C.I. = 0.13 
Cl C.R. = 0.03 C.R. = 0.14 

The relative brightness is obtained by computing the inverse square values. We have: 

fl
Cl

9 0.123 0.015129 66.098 0.6079 0.61 
15 0.205 0.042025 23.79 0.2188 0.22 
21 0.288 0.082944 12.05 0.1108 0.11 

Cl 28 I 0.384 0.147456 6.78 0.0623 0.06 

Square of Reciprocal 
Normalized normalized of previous Normalized Rounding 

Distance distance distance column reciprocal off 

) First! and second trial eigenvectors should be compared with the last column of this table. 
It is interesting to note that the judgments have captured a natural law. 

Note' the sensitivity of the results as the object is very close to the source, for then it 
absorbs most of the value of the relative index and a small error in its distance from the source 
yields great error in its value. 

The effectiveness of the fundamental semantic scale in making paired comparisons has 
been demonstrated in a variety of applications. One of these applications involves comparison 
of areas of five figures, done a large number of times in the presence of an audience due to its 
simplicity. 

Figure 1 gives five areas to which the paired comparison process and the scale can be 
applied to test, the validity of the procedure. One may approximate the outcome by adding the 
rows of the matrix and dividing by the total. 

Figure 1 
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The actual relative values of these areas are A =0.47, B=0.05, C=0.24, D=0.14, and 
E=0.09 with which the answer may be compared. By comparing more than two alternatives 
in a decision problem, one is able to obtain better values of the derived scale because of 
redundancy in the comparisons which helps improve the accuracy of the judgments. 

6. Continuous Comparisons -- Mental Activity and Ratio Scales 
In the first part of the paper we spoke of discrete comparisons and dealt with them as 

they occur at the conscious level. We now discuss continuous comparisons which occur at the 
unconscious level and most profoundly in the neurons of the brain. There are direct analogies 
to the case of discrete comparisons. All sensation, perception, feeling, behavior and thought are 
carried out by the firing of neurons. Neurons occur in a variety and use different 
neurotransmitters and neuropeptides in their type of communication. Through the firing process 
a neuron shares with other neurons with which it is linked in the representation of data and in 
•the intensity with which these data are recorded. There are several consequences of neural 
firings the most important of which are the formation of pictures and sounds, detection of 
movement, the creation of feelings and ideas and the control of physical, behavioral, 
communication and thought processes to produce actions and reactions and to use memory and 
feedback to modify and change the control. All these occur according to carefully prescribed 
magnitudes mostly in proportion to the stimuli received. When precision is needed, which is 
often, the brain works with ratio scales to maintain correspondence between what is experienced 
and what is internalized. 

What can we say about the relationship between the fi ring of neurons and the creation 
of patterns of recognizable information? How are mathematics and particularly numbers derived 
from the activity of neurons? This is a vast field for investigation for which we give a small 
start in this paper. As a byproduct of the basic idea of relative comparisons, we attempt to show 
how geometry occurs in sighted person's consciousness. We derive a general representation of 
the firing of neurons. 

A neuron consists of three parts, the axone, the cell boay and the dendrites [8]. The cell 
body processes information, whereas the dendrites receive signals and the axone sends signals. 
The synaptic cleft is a microscopic gap of about 200 nanometers width between the nerve 
endings of one neuron and the cell-body and dendrites of the next. The diode-like synapse 
conducts current in one direction only from the presynaptic to the postsynaptic neuron. 

The firing of a neuron is influenced by its threshold of excitability, its local chemical 
environment, and the sum of excitatory and inhibitory impulses it receives within a brief period 
of time. The impulse delivered by a nerve at the various synapses has a constant amount of 
excitation or of inhibition, which are increased in amount by increasing the number of impulses 
sent in a short period. The impulse delivered to a neuron has to be raised to excite it to fire 
again and again. The excitatory effect of an impulse lasts 5 milliseconds. The intensity of the 
current supplied to a neuron and the neuron's rate of firing of impulses is linear in some neurons 
and has an S-shaped curve in others. Some places neurons in the central nervous system are 
kept receiving excitatory impulses so they would be ready to fi re on the arrival of a few more 
impulses. 

Some neurons spread their synapses widely and some channel them to a few pathways. 
When a central or linearly arranged group of neurons is excited, the surrounding neurons are 
simultaneously inhibited, and to emphasize contrast the stronger the excitation, the stronger is 
the surrounding inhibition. In addition, this type of excitation and inhibition can travel down 

•••• 
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a part of the body for example (lateral inhibition). 
(Th At the synapse excitation and inhibition are electrical occurrences similar to those in the 

nerve fiber. An impulse arrives at a synapse, causes the bursting of vesicles containing constant 
amounts of neurotransmitter chemical (made in the cell body and transported to the cleft) which 

(Th. travels across the cleft and unites with the protein of the postsynaptic membrane. The membrane 
then becomes permeable to some hydrated ions and not to others; according to which ions pass, 
and depolarization or excitation, or hyperpolarization or inhibition occur. Excitation and 
inhibition are determined by the size and shape of the pores of the receptor site. Smaller pores 
cause inhibition by allowing potassium and chloride ions to pass. Larger pores cause excitation 
by allowing sodium and chloride ions to pass. Once the transmitter has reacted with the post-
synaptic membrane, it is inactivated and/or taken up again into the presynaptic nerve ending. 

O In a chain of nerve fibers in the central nervous system, different transmitters are used. Even 
O a simple reflex, with only one synapse, is not the same on every occasion. Repeated stimulation 

will decrease and stop the response. 
According to Gregory [8], elaborate sets of wiring produce specificity of orientation and 

of direction!of movement and other special properties. What is common to all regions is the 
local naturei of the wiring. By the time several synapses have been traversed the influence of 

C) the impact has spread vertically to all cell layers. Several other sets of fibers carry modified 

o messages ont of the area. The information carried into the cortex by a single fiber can make 
itself felt through the entire thickness. A block of cortex about one or two millimeters in size 
is what is needed to take care of a region of the visual world equivalent to the size of an 

( aggregate fibld. 
The reciprocal relation in neural firing arises in the comparison of neurotransmitter-

generated charges in increments of time [27]. This comparison is represented by the reciprocal 
kernel mapping K(s,t) where s and t denote time used for indexing as i and j are used in the 

( discrete case. We select an interval of time [a,b] and our convention will be to choose a=0. 
( Let 0=to< <... < t„.1 < to=b be a partition of the interval [0,b], lk tk-tk.i, k=1, 2, ..., n. 

Let w(t), t E [0,b] be a single firing (voltage discharge) of a neuron in spontaneous activity. In 
simple terms, if G(t), tE [0,b] is the cumulative response of the neuron in spontaneous activity 

over time, given by G(t) = w(u)du, then dG(t) w(t), where w(t)dt is the response during 
dt ( 

an infinitesimal period of time. Note that G(t) is monotone strictly increasing and hence 
w(t) > O. Lie 

G(ti)-G(ti_ i) 
K(1 ,1)= 

' G(5)-G(ti_1) 
be the relative comparison of the response of a neuron during a time interval of length At; with 
another time interval of length Ac. Cross multiplication and summation over j yields: 

—I En K(101)[G(0)-G(5_1)]=G(t1)-G(t1_1), i =1, 2, . . . , n (1) 
n 

If G(t) is of class C1[0,b] of once differentiable functions, then as Atk 0 for all k, 

K(Ii,I;) -• K(s,t)= —w(s),s,tE [OA. Also because the left hand side of (1) is an average, we 
w(t) 

obtain as 4-4) for all k, and as n-->co: 
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ii bK(s,t)w(t)dt=w(s). 
b .1 0 

It is easy to show that b is the principal eigenvalue (i.e., the largest in absolute value) 
of the consistent kernel K(s,t) because all the other eigenvalues are zero, (the eigenfunctions 
being any function orthogonal to w(t) on [0,b].) In general, if K(li,L) is reciprocal but not 
consistent, the homogeneous equations takes the form given by: 

W(S)=Xo 
o

K(s,t)w(t)dt or in operator form (.1-X0K)w=0, ivEL2[0,6] 

where I is the identity operator, and K is a compact integral operator defined on the space 
L2[0,b] of Lebesgue square integrable functions: 

Kf(s)= o K(s,t)f(t)dt, fE La0 ,b] (2) 

Because positive reciprocal kernels are non-factorable (the property that corresponds to 
irreducibility for non-negative matrices), there exists a unique positive simple eigenvalue' 

X.0-' whose modulus dominates the moduli of all other eigenvalues. 
As in the discrete case, there is an eigenfunction w(s), that is unique to within a 

multiplicative constant (thus belongs to a ratio scale), which corresponds to the simple maximum 

positive eigenvalue X'. It is called the response function of the neuron in spontaneous activity. 

From K(s,t) > 0, K(0,t)=0 for all t 0, it follows that w(s) > 0, for s 0, and w(0)=0 [29, 
p.186]. If the reciprocal kernel K(s,t) 0, on 0 s, t is Lebesgue square integrable and 
continuously differentiable, and if lim K(s,Et) exists, then: 

W(t) tre 8(1)/ brest"dt (3) 0 
satisfies (2) for some choice of g(t). This soltition of (2) assumes that the comparison process 
is continuous, but it is not meaningful to compare the response during an interval of length zero 
with the response during a non-zero interval no matter how small it is, for then the reciprocal 
comparison would be unbounded. From a theoretical standpoint, one can study the problem 
using Lebesgue integration and allowing only one zero. 

Because linear combinations of the functions {re-o, a,13 0}: 

E R I , for all i (4) 
J., 

are dense in the space of bounded continuous function C[0,b] we can approximate tneg(1) by linear 
combinations of re' and hence we substitute g(t)=-flt, 113. • 0 in the eigenfunction w(t). In fact 
such linear combinations are dense in even more general spaces worthy of consideration in 
representing neural responses to stimuli [27]. The sensitivity of neural firing is not completely 
analogous to the density of the rational numbers in the real number system. The rationals are 
countable infinite, the number of neurons is finite but large. In speaking of density here we may 
think of coming sufficiently close (within some prescribed bound rather than arbitrarily close). 

The firing of a neuron between waiting periods has been represented mathematically by 
the function: 

T(a,13) = xn(t)e -"" = erd"8•1 (̀", x,a,0 >0 
for a single neuron, where x is the intensity of a stimulus and a and 13 are parameters having 
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to do with the quantity of neurotransmitter input needed to build up to firing threshold and hence 
determines both the frequency and intensity of firings, and with the efficiency rate of using the 
amounts of available input respectively. The empirical work of Hodgkin and Huxley [9] show 
that this is in fact the expression that describes the firing of a neuron penetrated with an electric 
probe and subjected to a visual electric stimulus. 

The analogous expression for the firing of a group of neurons is given by: 
n n: 

= E Exad(t—T,t)e —filt"—T.) 
ial k•I 

where Tk are time displacements of firings from absolute time t. This expression could provide 
the basis to account for the functions of the brain described above. In particular we have used 
these dense functions to show how pictures are formed [28]. 

We take the derivatives of T(a, f3), its gradient and normal to the gradient. 
Differentiation yields: 
a"T aT = loin x T _ , le) and in particular = logx which says that the relative rate of 
ace T da 

change in response buildup varies with the logarithm of the. magnitude of the stimulus. We also 

have: anT 
4Z  

i= ( - 1) "  X n T(a,0) and = -x which says that the relative rate of change 

:of response decay declines with the magnitude of the stimulus. 

-Again  a7T  = ( - 1) k r e logx T(a,g) = (-logx x  ylognx T(a,d3) 
313kaan't 

aT Finally we have T 
d — = 2 -0 which says that the relative change in response to a stimulus 
x x 

of magnitude x is a hyperbolic function of x. 
The maximum increase in T is given by the gradient: VT = T(a,0)(log x,-x) and no 

increase is given by the normal to the gradient which lies in the tangent plane and is given by 

AT = T(a,13) (—x ,I) which indicates stable response to a stimulus along the two 
logx 

parameters. More generally, if T(a l,...,an; = E aix n'esit then 
3=1 

VT= T(log x,...,log and .LVT= T(xllog x,...,x/log x,1,..,,1). 
In the above expression for the normal to the gradient there appears the expression x/log 

x, well known in number theory. According to the prime number theorem if r(x) is the number 

of primes less than or equal to x then lim 7r(x) = 1. We conjecture this could be the 
x/log x 

cognitive connection between the firing of neurons and the origin of neurons. The nervous 
system mu# have an intrinsic way to estimate magnitudes to control the release of chemicals in 
proportionate amounts. 

7. The Case for How the Mind Constructs Geometry [14,22] 
Thdre are sequences of sensations to which we are constantly exposed throughout life. 

The frequent recurrence of some sensations leads to a process of grouping them together to form 
concepts. These concepts are stored in memory and associated with similarly recognizable 
experience. Identification of specific sensations is a discrete process that occurs in a succession 
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and can be put into 1-1 correspondence with a set of consecutive integers. Sensations can also 
forcibly occur (be interpolated in memory) between two such discrete complex sensations. 
Interpolations between the integers can be associated with the rational numbers because they can 
be put into 1-1 correspondence with the integers. By considering all finite or infinite sequences 
of interpolations we are led to the topological equivalent of the real numbers and the one 
dimensional continuum. This continuum represents subjective time, which is the flow of 
information gathered from sensation. Subjective time flows in one direction and is irreversible. 
A later memory is associated with a greater number of sensation complexes than an earlier one. 
The information is gathered through many channels involving the senses and combinations of 
conscious and semiconscious streams. We note that the correspondence made with the integers 
does not depend on where we choose an origin because the correspondence may begin with any 
new experience of sensations. Thus our frame of reference, which is subjective time, is 
translation invariant. The one to one correspondence can now be made with any set of real 
numbers ordered as the original set without affecting the sequence of sensations itself. This is 
invariance under a continuous, one to one, order preserving transformation. We now have both 
translation and change of scale invariance. 

The result is an isomorphic mapping from' the real world to memory. It is not an identity 
mapping because subjective time is irreversible and cannot repeat. However, the sensations can 
be repeated and put in one-to-one correspondence with intervals of subjective time. Thus, the 
world of sensations is homomorphic to the one-dimensional irreversible continuum. So far we 
may conclude that the world of experience is essentially two dimensional, the dimension of 
sensations and the dimension of memories of sensations. 

But usually there is a choice about acquiring or avoiding sensation and this experience 
can be analyzed as a sequence of interaction and avoidance of sensation. This can in turn be 
put in one to one correspondence with subjective time. We now have three dimensions to 
consider: subjective time, and the two dimensions of interaction and avoidance - all 
homomorphic to the real number continuum. The result is a topological space With a 
transformation group. The transformations in fact are an algebraic field. This field admits the 
usual topology, is locally compact, connected and satisfies the second countability axiom. As 
a result the topological algebraic field is homomorphic to one of three fields: the real numbers, 
the complex numbers, or the real quaternions. The translation group has the dimension of the 
full group. The foregoing argument can be generalized to the case where simultaneous sensation 
complexes are registered in memory as with the eye viewing different happenings at one time. 
This shows that our space-time is uniquely 4-dimensional, one dimension of time and three 
dimensions of space and is a metrizable space. In such a space it is possible to derive ratio scale 
eigenvectors and eigenfunctions. A useful way for relating two eigenvector ratio scales x = (xl, 

x„) and y = (y1, y„) is through Hilbert's order preserving metric defined by the ratios: 
D(x,y)= log (max (x 2,y) I min (xi,z)). 

Clearly, the smaller the value of D(x,y), the closer together are x and y. 
An important concern in relating people as observers to forms in the environment is with 

the constancy or slow change in recognition of form, that is, of the characteristics of that form
which remain invariant to proportion (of light in the case of vision) or movement of either the 
object itself or the eyes or head or body of the receiver. Constancy or invariance is essential 
to the duration of a form in the mind. Incremental change in form makes it possible to connect 
in small steps different states of that form. The states of a form may be regarded as 
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decompositions of that form at different instants of time. An impression must be constantly 
renewed to register it in memory from instant to instant. Hence the idea of transformation and 
invariance with respect to transformation for the sake of recognition, connectedness and 
continuity, basic concepts in geometry. 

8. Spatial Inforrnation and Spatial Knowledge 
In dins section and in the final one we' discuss the abstract congruence of structures 

derived from sense data no matter what organ of the senses is used. The visual system is, by 
design, well suited for the acquisition of information about the extension of spatial features and 
about their arrangement in space. Other perceptual systems do provide some information about 
space; but, in respect to the quantity, accuracy, dependability, distribution, and timeliness of the 
spatial information they can provide, they are vastly inferior to the visual system [6]. 

According to Rieser [21] three issues are involved in how vision is developed. Each 
issue has two points of view. 

(;) walk; 
1) People come to know the spatial structure of things encountered sequentially along a 

a) Spatial knowledge results from the construction of a cognitive map for assembling 

0 
spatial data and coordinating them like jigsaw puzzle pieces within a unifying framework 
[31]. i Cognitive map theorists assume that the capacity to create knowledge of novel 
relations resides first in the ability to integrate sequentially viewed objects within a single 
mentally represented coordinate system; and then, in the ability to read the new relations 

0 from tithat representation. Unlike perceptual information, cognitive information, is not 
obtained directly from the space in which the task is performed [6]. It is, instead, obtained 

Cc) from ;memory. The information supplied by memory is either a representation of 

0 perceptual information, or information established by inference (e.g., relationships among 
spatial features that were not observed on the same occasion). Demonstrations have 
indicated that by the end of the first month, infants will make directionally appropriate arm 
movements to a visually perceived target [20,10]. For blind pedestrians, memory 
representation is constructed with piecemeal information acquired on many different 
occasions. It is probably less accurate than the representation that is constructed with 
infortation gathered on one, or at most a very few occasions by sighted people. For 
instance, because visual observers can observe a relatively large space on one occasion, 
they can observe not only its features, but also the spatial relationship of those features. 
Blind observers must bring together spatial information gathered on different occasions and 

Wa establish the spatial relationship of many features by inference. The memorial 
representations of blind pedestrians are also different from the memorial representations 
of sighted pedestrians in respect to the quantity of information they contain. The 
predominant, mental representation perspective is that visual experience is necessary in 
order' for people to encode spatial structure. Researchers agree that many congenitally 
blindjpeople 
layout 

seem to have little "spatial sense" although they mentally represent spatial 
of large spaces. 

b) There are direct perceptions by which observers detect spatial structure, perceptions 
mediated b9 perceptual learning, not by mentally constructed maps. This view, proposed 
by Japes Gibson [7], emphasizes that knowledge of the spatial structure of places viewed 
in supcession along a walk can be explained without attributing the creative work of 
spatially interrelating the different views to the construction of a cognitive map. The 
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responsible process is perceptual learning. 
2) What form does spatial knowledge take? 

a) Such knowledge is necessarily visual, encoded in visual images or in nonimaginal 
visual terms; and 

b) Such knowledge is analogous to the spatial information itself and not devoted to any 
particular sensory modality. Here we have two themes: 

i) Descarte's view was that sequences of tactual impressions are compiled within 
a single, unifying spatial framework, a framework embodying the metric properties 
of Euclidean geometry. For Descartes, the Euclidean framework was amodal, able 
to register inputs from di.fferent senses in universal terms, and in this way it tended 
to unify the senses, 

ii) Berkeley [2] denied Descarte's nativistic view of development, and claimed 
that the ability to learn the spatial structure of sequentially encountered things has an 
associationistic basis in previous experience. 

3) How does spatial knowledge develop? 
a) The capacity to know spatial structure is induced by visual experience and cannot 

develop without vision sometime during one's lifetime. 
b) Visual experiences play a much weaker developmental role and the capacity can 

develop without vision. 
We may assume that all information about the real world is acquired in relative terms 

through paired comparisons and paired comparisons give rise to inversion. We now briefly 
investigate the kind of knowledge derived through inversion. 

9. Brief Perspective on the History of Hyperbolic Geometry [30] 
Parly in the 19th century, Gauss, Bolyai and Lobachevslci deduced the logical 

consequences of replacing the parallel axiom of Euclidean geometry with the hyperbolic parallel 
axiom. The results were exercises in logic without a real model of that geometry. In the 1860's 
Eugenio Beltrami made hyperbolic geometry physically plausible by showing that there is local 
isometry between the two surfaces, the pseudosphere and the hyperbolic plane. Along with the 
sphere and the plane the pseudosphere has constant curvature and therefore its geodesics map 
into straight lines in the plane. Beltrami proved that a geodesic mapping of the pseudosphere 
into a Euclidean plane carries each point of the pseudosphere to a point of the unit disk. It is 
also known [5] that there is a 1-1 geodesic mapping of the hyperbolic plane onto the unit disk. 
This linkage of the local metric ds2 of the pseudosphere and the hyperbolic plane through the 
unit disk shows that the two surfaces are locally isometric and hence that hyperbolic geometry 
has a 1-1 geodesic mapping into (but not onto) a surface in three dimensional Euclidean space. 
The geodesic connection through the unit disk as a representation of the hyperbolic plane and 
the various geodesic properties linked to the pseudosphere give the unit disk a special role as a 
model of the hyperbolic plane. It is called the Beltrami disk model. Based on a somewhat 
different approach, Felix Klein in 1871 again showed that the unit disk justifiably serves as a 
model of the hyperbolic plane. His points, lines, parallel lines, and diverging lines were the 
same as Beltrami's but he used a different idea of distance than a geodesic and of angle and of 
motion or transformation. 'Inversion with respect to the unit circle discussed in the next section 
came a little later as a model of hyperbolic geometry. 

56 



10. Inversion and Geometry [1,3,16] 
Inversion arises in all comparisons, not just with respect to distance. To see this, let g' 

be an arbitrary set of a countable number of elements and let g' x g'be its cartesian product. 
For every A E tie FA A x x A be a mapping that associates with each pair (A,g) 
E A x the pair (g;A) E g' x A. Let K: g' x R+ be a mapping to the positive reals. 
If for any B E g'we have K(A,B) K(B,A) = 1, where (B,A) = FA(A,B), then F {FA: A E 
gl defines a reciprocal relation on g' x g'. As we have seen, a reciprocal relation is an 
inversion. 

Hyperbolic geometry is a characterization of optical reality. Geometry is studied in two 
ways. The first is structural in terms of metric properties giving rise to form, size, congruence 
and similarity, more in line with visual properties the eyes are able to perceive. The other 
equivalent approach is through groups of transformations. 

The Euclidean plane E can be generated by mapping the interior of a circle with center 
0 and radius r to its exterior by means of an involution or inversion -yc, i.e., a bijective mapping 
of the circle to itself such that 72 = 1. This mapping makes each point A inside the circle 
correspond to a point A' outside the circle such that d(0,A)d(0,A') = 1. The inversive plane 
is then defined by adding { co } to E [16]. The points on the circle of inversion are fixed. 

Poincare constructed a model to represent hyperbolic geometry in the Euclidean plane 
based on inversion with respect to a given circle of Unit radius and center 0. Here again the 

...circle, and: inversions with respect to it play an important role. If a curve intersects the circle 
> of inversign, its inverse will intersect it in the same point. The circle of inversion is fixed. 

Straight lines through the center of inversion are also fixed under inversion, although there is 
a redistribution of the points. Every circle orthogonal to the circle of inversion is fixed, for the 
power of the center of inversion with regard to such a circle is 1. Inversion takes straight lines 
and circlesi to straight lines and circles. Circles may become straight lines and vice versa. If 
a moving point traces any curve continuously, its inverse will trace continuously a curve called 
•the inverse of the first. 

We give four important and typical theorems. Their geometric structure must have 
counterparts for other more usual kinds of inversions. 

Theorem: If A, A' and B, B' are any two pairs of inverse points which do not lie on 
the same diameter of the circle of inversion, then they lie on a circle and angles OAB and OBA 
are equal, respectively, to angles OB'A and OAB'. 

Theorem: Every straight line which does not pass through the center of inversion inverts 
into a circle passing through the center of inversion, and conversely. 

Theorem: Circles which do not pass through the center of inversion invert into circles 
that pass through the circle of inversion. 

When a transformation preserves angles it is said to be conformal. 
Theorem: Inversion is a conformal transformation. 
Inversions do not distinguish between Euclidean lines and Euclidean circles because their 

inversion is either a line or a circle. Thus, the term inversive lines is used to refer to Euclidean 
lines or Euclidean circles. A Euclidean line may be regarded as the 'limiting case' of circles 
of increasing radius. In this sense, it is not surprising that reflection in a line is the analog of 
inversion in a circle. 

The representation of hyperbolic space by the inversive plane was mentioned casually by 
mathematicians in England, Germany, and the United States in the 19th century. Its first 
systematid development was in Germany by Heinrich Liebmann in his Nichteuklidische 
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Geometric [19]. 
The inversive plane has been used in two distinct, though related ways. Following 

Poincare, the circles (and lines) orthogonal to one circle (or line) co represent the lines of the 
hyperbolic plane, and the points inside the circle (or in the upper half-plane bounded by the line) 
represent the points of the hyperbolic plane. Second, following Liebmann, all the circles (and 
lines) in the inversive plane represent the planes of hyperbolic space. In this case, lines are 
represented by point-pairs, but points are not represented at all, unless it can be said that they 
are represented by elliptic bundles. The relation between these two representations is seen by 
taking Poincare's w to be the Liebmann representation of one particular plane in hyperbolic 
space and considering the lines in this one plane, which is, of course, a hyperbolic plane. The 
representation generated by reciprocal comparisons belongs to the hyperbolic plane. 

In the three dimensional case the circle may be conveniently regarded .as a sphere: a 
celestial sphere that surrounds the observer and is so large that he may be regarded as being at 
its center even when he changes position. In this manner, the three-parameter family of planes 
in space is represented by the distinction made between great and small circles - that is, by the 
three-parameter family of circles in the inversive plane. Each pair of intersecting planes is 
represented by a pair of intersecting circles; the line of intersection is represented by two points, 
points at which the circles intersect - arising from the two ends of the line; and the two 
supplementary dihedral angles (formed by the two intersecting planes) are represented by the 
angles of intersecting, tangent, and on-intersecting - represent three kinds of plane-pair: 
intersecting, parallel, and ultraparallel. Thus, the space under consideration is hyperbolic, not 
Euclidean. 

Inversion gives credibility to the idea that the geometric and more generally mathematical 
properties of the perceived world in which we live are closely linked to the fundamental 
operations on which our cognitive processes are based. 

II. Conclusion 
Granted that inversion which derives from comparisons gives rise to a mentally 

hyperbolic manifold, and to complete our effort to link the physical world to our thought 
processes, what guarantee do we have that our eyes and vision are structured and located in such 
a way as to represent without distortion space and time as a hyperbolic manifold that is 
compatible with the inversion required by our thought processes based on comparison? 

In his seminal work Rudolf Luneberg [15] has investigated this question. His conclusion 
may be summarized as follows: He assumes that physical space is a Euclidean manifold of the 
"domain in which binocular vision is of practical importance." But then he goes on to show that 
if the physical world were Euclidean, our perception of the size of objects would always be in 
proportion to their distance which is not the case as evidenced for example by the moon and the 
sun. He calls this requirement of proportionality, psychometric coordination and proves that the 
geometric manifold required for psychometric coordination is unique. Since the geometry in a 
manifold can be derived from its metric (using small line elements), he shows by requiring 
isometry between the differentials of a Euclidean physical world and the yisual manifold, that 
visual space as determined by binocular vision is non-Euclidean, and in fact hyperbolic. 

One may question the idea that the eye sees the entire manifold at once and that if is does 
not, the resulting conclusions may be incorrect. To address this concern, Indow [11] showed 
that as a result of the constancy of the principle of reciprocal comparisons, the curvature of the 
optical space must be the same constant rather than a different one for each glance of the eye. 
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Luneberg argued that there is no contradiction between the assumption of a locally Euclidean 
world and the conclusion that visual sensations form a non-Euclidean manifold, by showing that 
relativistic space of physical experience also leads to a hyperbolic metric. To do this he relied 
on the fact that the Minkowslci space-time metric with differential element 

ds2 = dx2±d3,2,dz2_c2dt2 is hyperbolic. 
The result is that what is known about physical space leads to a hyperbolic metric; it is 

sensed through binocular vision that is also hyperbolic and interpreted by a nervous system that 
applies comparisons to relate and understand sensations which lead to inversion and to 
hyperbolic geometry. One may infer from all this that there is a unifying principle of 
comparisons underlying and unifying all three, and is the same for the physical world, for our 
visual sensation and for our world of mental synthesis. In addition, because of the universality 
of inversion across all processes of sensing cognition, Descarte's dictum about the amodality of 
geometry becomes highly plausible with the exception that "Euclidean" should be replaced by 
"hyperbolicl. Finally, because comparisons are essential for evaluating how we sense and feel 
the world, the idea of a metric and of its corresponding geometry is also essential for obtaining 
basic knowledge about the world. In this light, the classical idea that the physical world as 

- perceived 'b'y us is mathematical through and through appears reasonable and can now bei 
-extended to include our thinking minds in it. 
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