Consistency of expert-based preference matrices

Martin Gavaleca, Karel Mlsa

aUniversity of Hradec Králové, Faculty of Informatics and Management, Rokitanského 62, 50003 Hradec Králové, Czech Republic

Keywords: preference matrix, AHP decision making, cyclic consistency, consistent matrix

2000 MSC: 90C15

1. Cyclic inconsistency of a preference matrix

In AHP approach to multi-criteria decision problem, the relative importance of alternatives is computed from preference matrices, which come from experience and can possibly be inconsistent.

An algorithm for computing a consistent approximation of a given preference matrix by digraph method is described in this paper. We start with an analysis of the inconsistency of a given preference matrix. The first type of inconsistency is caused by so-called inconsistency cycles. The inconsistency of this type is removed by computing the strongly connected components in the associated digraph and a small modification. If the modified matrix is cyclic consistent, i.e. it contains no inconsistent cycles, or if some of the entries of the matrix are missing, then a consistent approximation is computed. The computational complexity of the algorithm is $O(n^2)$.

Preference matrix A is called cyclic inconsistent, if there is a cycle

$$i_1, i_2, \ldots, i_r, i_{r+1} = i_1$$

of length $r \geq 2$ of indices in N (called: inconsistent cycle in A) such that the inequalities

$$a(i_ki_{k+1}) \geq 1 \quad \text{for every} \quad k = 1, 2, \ldots, r$$

(1)

\textit{Email addresses:} martin.gavalec@uhk.cz (Martin Gavalec), karel.mls@uhk.cz (Karel Mls)

Preprint submitted to Elsevier March 31, 2014
hold, and at least one of the inequalities is strict. Matrix A is cyclic consistent, if every cycle in A is consistent, i.e. A contains no inconsistent cycles. Examples of inconsistent cycles of length $r = 3$ are shown in Figure 1.

![Figure 1: Possible types of cyclic inconsistency with $r = 3$](image)

Theorem 1.1. If a complete preference matrix A contains an inconsistent cycle of length $r > 3$, then A also contains an inconsistent cycle of length 3.

Corollary 1.2. The cyclic consistency of a complete preference matrix can be recognized in time $O(n^3)$, by verifying all index cycles of length 3 for the inconsistency.

Theorem 1.1 is illustrated by Figure 2 below.

![Figure 2: Cyclic inconsistency with $r = 4$](image)

The preference digraph $\mathcal{D} = (V(A), E(A))$ of a given preference matrix A is defined as follows

\[
V(\mathcal{D}) = \{1, 2, \ldots, n\} \\
E(\mathcal{D}) = \{(i, j); a_{ij} \geq 1\} \\
E^+(\mathcal{D}) = \{(i, j); a_{ij} > 1\}
\]

The edges in $E^+(\mathcal{D})$ are called strong preference edges.
Theorem 1.3. Preference matrix A is cyclic consistent if and only if every cycle C in $\mathcal{D}(A)$ contains no strong preference edges, i.e. $C \cap E^+(\mathcal{D}) = \emptyset$.

Theorem 1.4. Preference matrix A is cyclic consistent if and only if every strongly connected component K in $\mathcal{D}(A)$ contains no strong preference edges, i.e. $(K \times K) \cap E^+(\mathcal{D}) = \emptyset$.

A possible treating method (3-cycle method, for short) is based on Theorem 1.1.

3-cycle method
1. find all inconsistent cycles of length 3 in A
2. change all preferences in the cycles to 1
3. repeat 1-2 until there is no inconsistent cycle of length 3 in A

The repetition of steps 1 and 2 in the 3-cycle method is necessary, because new inconsistent cycles can be created by treating the cyclic inconsistency by cycles of length 3 (see Figure 3).

The above disadvantage is not present at another method for treating the inconsistency (SCC method, for short) which works with strongly connected components in the preference digraph $\mathcal{D}(A)$. The method is based on Theorem 1.4.

SCC method
1. find all strongly connected components in digraf $\mathcal{D}(A)$
2. change all preferences within the strongly connected components to 1

Figure 3: Creating new inconsistent cycles of length $r = 3$
Theorem 1.5. If matrix A' is created from preference matrix A by SCC method, i.e.
$$a'_{ij} = \begin{cases} 1 & \text{for } i, j \in \mathcal{K} \text{ in every strongly connected component } \mathcal{K} \text{ of } \mathcal{D}(A) \\ a_{ij} & \text{otherwise} \end{cases},$$
then A' is reciprocal and cyclic consistent.

The cyclic consistent matrix A' computed by the SCC algorithm is called the cyclic consistent approximation of A.

2. Computing consistent preferences

Preference order $\mathcal{P}(A)$ induced by A is defined as follows: if inequalities $a(i_ki_{k+1}) \geq 1$ with $k = 1, 2, \ldots, r - 1$ hold for some sequence $i = i_1, i_2, \ldots, i_r = j$, then $(i, j) \in \mathcal{P}(A)$.

Theorem 2.1. If a preference matrix A is cyclic consistent, then $\mathcal{P}(A)$ is a uniquely determined linear order of alternatives (up to permutations of equivalent preferences).

Theorem 2.2. If A is a preference matrix and A' is its cyclic consistent approximation, then the linear order $\mathcal{P}(A')$ of alternatives is equal to the order of strictly connected components in preference digraph $\mathcal{D}(A)$.

Algorithm ConsistApprox

1. Input: preference matrix A
2. compute preference digraph $\mathcal{D}(A)$
3. compute cyclic consistent matrix A' by SCC method
4. compute linear order $\mathcal{P}(A')$ induced by the order of strongly connected components in digraph $\mathcal{D}(A)$
5. for any component \mathcal{K} and its successor \mathcal{L} substitute values a'_{ij} with $i \in \mathcal{K}$, $j \in \mathcal{L}$ by their common geometric mean \tilde{a}_{ij}
6. extend the ‘overdiagonal block’ values in matrix \tilde{A} using the reciprocity and consistency condition
7. Output: reciprocal and consistent approximation matrix \tilde{A}

Theorem 2.3. Algorithm ConsistApprox works correctly and for every $n \times n$ preference matrix A the algorithm computes a consistent approximation \tilde{A} in $O(n^2)$ time.
Remark 2.4. Algorithm ConsistApprox can easily be modified also for the case of missing values in the input preference matrix A. In the modification, the missing input values create no edges in the preference digraph $D(A)$.

Theorem 2.5. If A is a preference matrix with missing values and if the order of strongly connected components in the preference digraph $D(A)$ is linear, then algorithm ConsistApprox with input matrix A works correctly, and the algorithm computes a consistent approximation $	ilde{A}$ in $O(n^2)$ time.

Acknowledgement

The support of the Czech Science Foundation project # 14-02424S is gratefully acknowledged.