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Summary:  Hierarchical decomposition is applied to the payoff matrix of a 2-player zero-sum 
noncooperative game. Relationship between the strategy vector of the integrated payoff matrix and 
the strategy vector of each decomposed payoff matrix is studied. For the case of 2×2 zero-sum 
noncooperative game with purely mixed strategies, a simple formula which relates the strategy 
vector of the integrated payoff matrix and the strategy vector of each decomposed payoff matrix is 
established; the strategy vector of the integrated payoff matrix is obtained as a weighted 
combination of the strategy vector of each decomposed payoff matrix with the weight considering 
both the priority weight of each decomposed payoff matrix (or payoff matrix for each criterion) and 
the magnitude of each decomposed payoff matrix. The higher layer integrated game corresponds to 
the strategic decision making and the lower layer decomposed games correspond to the tactical 
decision making. 

 
 

1. Introduction 
 In the framework of game theoretic decision making, there are two or more players 
competing each other so as to optimize each of their own goals. Likely outcomes when 
players select from various courses of strategies are called payoffs. When the payoffs are 
expressed in the form of matrix, they are called payoff matrix. Each element of a payoff 
matrix for a player is the outcome of the game for the player when the player and the 
rest of players take some specific combination of strategies. We apply the hierarchical 
decomposition to the payoff matrix of a game, or namely, we consider the situation 
where the payoff matrix consists of several submatrixes with different criterion(Fig.1) 
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Fig.1  Hierarchical decomposition of payoff matrix 

 
 For the case of ２×2 zero-sum noncooperative game, we will investigate the 
relationship between the minimax-maximin equilibrium solution of an integrated 



payoff matrix and the equilibrium solution of each decomposed payoff matrix. 
  In Chapter 2, we will show an example where the strategy vector of an integrated 
payoff matrix cannot be obtained by simply weighting each solution vector by its 
priority weight and combining them. In Chapter 3, we will prove a theorem stating that 
the strategy vector of an integrated payoff matrix can be obtained by the weighted sum 
of each solution vector considering not only the priority weight but also the 
characteristic weight of each decomposed payoff matrix. In Chapter 4, the validity of 
presented theorem is examined by three ２×２ zero-sum game examples. In Chapter 5, 
future research problems are discussed from the viewpoint of game-theoretic AHP. 
 
 
2. Coin matching game 
  Consider the following 2×2 zero-sum game of matching coins. There are two players, 
playerⅠ and playerⅡ. PlayerⅠ has two strategies to show heads H or tails T, and 
playerⅡ can likewise select H or T. If the two players’ coins match with either two 
heads or else two tails, then playerⅠ wins $

3
24  or $

3
16 , respectively, from playerⅡ. If 

the coins do not match, playerⅠ wins less moneys from playerⅡ as shown by the 
payoff matrix Ａ of Eq.(1). Because of coin matching game, playerⅠ gets more moneys 
from playerⅡ when the coins do match, and the payoff matrix Ａ shows moneys player
Ⅰ gets from playerⅡ for the four cases. 
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  Actually this payoff matrix is determined from the viewpoint of two factors (or two 
criteria). One is stability factor and the other is speculation (or gambling) factor. From 
the viewpoint of stability, the amounts of moneys playerⅠ gets from playerⅡ when the 
coins do match should be not so big from those when they do not match. So the payoff 
matrix Ａ(1) under the stability criterion(Criterion 1) would be given by Eq.(2). 
 

          ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

32
14

1Ａ           (2) 

 
From the viewpoint of speculation, the amounts of moneys playerⅠ gets from playerⅡ 
when the coins do match should be far bigger than those when they do not match. So the 
payoff matrix Ａ(2) under the speculation criterion(Criterion 2) would be given by 
Eq.(3). 
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If the importance ratio of Criterion 1 to Criterion 2 is 1:2, then the integrated payoff 
matrix Ａ of Eq.(1) is obtained by Eq.(4), where 1Ρ =1/3 and 2Ρ =2/3. 



 
         ( ) ( )２Ａ＋１ＡＡ＝ ２１ ΡΡ       (4) 
 
 Equilibrium solutions for the integrated payoff matrix Ａ, or maximin strategy vector 
x  for playerⅠ and minimax strategy vector y  for playerⅡ, are given by Eq.(5) and 
Eq.(6) 
 

          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

83
85

x        (5) 

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

125
127

y       (6) 

 Equilibrium solutions for the payoff matrix Ａ(1) are given by Eq.(7) and Eq.(8) 
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  Equilibrium solutions for the payoff matrix Ａ(2) are given by Eq.(9) and Eq.(10). 
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  Among the equilibrium solutions of the three payoff matrixes, we hope that some 
relationship should hold, such as Eq.(11) and Eq.(12) 
 
        ( ) ( ) ? 　２＋１＝ ２１ xxx ΡΡ         (11) 
        ( ) ( ) ? 　２＋１ ２１ yyy ΡΡ=         (12) 
But Eq.(11) and Eq.(12) do not hold. That is, the strategy vector of an integrated payoff 
matrix cannot be obtained in general by simply weighting the strategy vector of each 
decomposed payoff matrix by its priority weight and combining them. 
 
3. AHP Theorem for game theoretic decision making 
 We will present a theorem which relates equilibrium strategy vectors of an integrated 
payoff matrix to equilibrium strategy vectors of decomposed payoff matrixes. 
 
〔Theorem〕 
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maximizer playerⅠ, and let x and y  be equilibrium strategy vectors for playerⅠ and 
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matrix under the k th criterion ( k =1,…,N) and x ( k )and y ( k ) be its equilibrium 
strategy vectors for playerⅠ and playerⅡ, respectively. Then, following relationship 
holds, if ( ) 10  ,10  ,10 <<<<<< kxyx  and ( ) 10 << ky . 
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Here, kp  is the priority weight for the k th criterion, and k∆  and ∆  are given by 
Eq.(15) and Eq.(16). 
 
         ( ) ( ) ( ) ( )kakakakak 21122211 −−+=∆    k =1,…,N   (15) 

         ∑= kkp ∆∆                                           (16)  ▢ 
 

〔Proof〕 

 Under the condition of ( ) 10  ,10  ,10 <<<<<< kxyx  and ( ) 10 << ky , x , y , 
x ( k )and y ( k ) are explicity given as below.  
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Substituting ( )∑= kaa ijij , Eq.(15), Eq.(16), Eq.(19) and Eq.(20) into the right-hand 
sides of Eq.(13) and Eq.(14), the relationship (13) and (14) is directly proved.(Q.E.D.) 
 This AHP theorem for game theoretic decision making holds under the condition of 

( ) 10  ,10  ,10 <<<<<< kxyx  and ( ) 10 << ky , where any element of strategy 
vectors is not allowed to take neither 0 nor 1. So, this condition can be called “purely 
mixed strategy condition”. This AHP theorem is expected to hold even not under purely 



mixed strategy condition, which will be examined by Example 3 in the next chapter. 
 The AHP theorem states that strategy vectors of an integrated game can be expressed 
by weighted average of strategy vectors of each decomposed game with weight kkp ∆ , 
where kp  is the priority weight for the k th criterion and k∆  can be interpreted as 
indicating the magnitude of each decomposed game. Also note that ∆  (defined by 
Eq.(16)) can be interpreted as the magnitude of the integrated game. 
 
4. Examples 
 The validity of the AHP theorem in Chapter 3 will be examined by there 2×２ 
zero-sum game examples. 
4.1 Example 1; coin matching game 
 The AHP theorem is applied to the coin matching game in Chapter 2, where the purely 
mixed strategy condition is satisfied. 
 Instead of Eq.(11) and Eq.(12), the AHP theorem insists that Eq.(21) and Eq.(22) hold. 
 

           ( ) ( )21 2211 x
p

x
p

x
∆
∆

∆
∆

+=                (21) 

          ( ) ( )21 2222 y
p

y
p

y
∆
∆

∆
∆

+=                (22) 

 
Substituting ,8 ,10 ,4 ,3

2 ,3
1

2121 ===== ∆∆∆pp  Eqs.(7), (8), (9) and (10) into 

right-hand sides of Eq.(21) and (22), x and y are calculated, which exactly coincide with 
those in Eq.(5) and Eq.(6). 
4.2 Example 2; TV program broadcasting game 
 Two TV stations are wondering which TV programs to broadcast, “drama” or “quiz”, on 
the prime time. The integrated payoff matrix A for playerⅠ is given by Eq.(23), which 
is made of two payoff matrixes, A(1) of Eq.(24) and A(2) of Eq.(25). 
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A(1) is the payoff matrix from the viewpoint of attractiveness to TV viewers and A(2) is 
the payoff matrix from the viewpoint of commercial effect. The integrated payoff matrix 
is obtained as a weighted sum of these two payoff matrixes, with priority weight 1p  on 
Criterion 1 (attractiveness) being 0.8 and priority weight 2p  on Criterion 2 
(commercial effect) being 0.2. 
 
        ( ) ( )2A1AA 21 pp +=            (26) 
                2.0   ,8.0 21 == pp  



The equilibrium solutions for the three payoff matrixes are given as below: 
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Since the magnitude of the game under Criterion 2 is negative ( 52 −=∆ ), ( )yx  is not a 
convex combination of ( )1x  and ( )2x  ( ( )1y  and ( )2y ), but following equations of 
AHP Theorem do hold. 
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4.3 Example 3; Offense-defense fighting game 
 Two forces are fighting each other and wondering which strategy to take, “offense” or 
“defense”. The integrated payoff matrix A for playerⅠ is given by Eq.(35), which is 
made of two payoff matrixes, A(1) of Eq.(36) and A(2) of Eq.(37).  
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A(1) is the payoff matrix from the viewpoint of weapon ability and A(2) is the payoff 
matrix from the viewpoint of social justice. The integrated payoff matrix is obtained as a 



weighted sum of these two payoff matrixes, with priority weight 1p  on Criterion 1 
(weapon) being 0.7 and priority weight 2p  on Criterion 2 (social justice) being 0.3. 
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The equilibrium solutions for the three payoff matrixes are given as below: 
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 Since all the equilibrium solutions are pure strategies and the purely mixed strategy 
condition is not satisfied, AHP Theorem does not hold in its original form as shown 
below. 
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But if 

5
7  is truncated to 1.0 and 

5
2

−  is truncated to 0, then the equality holds both in 

(45) and (46). Even when the AHP Theorem in its original form does not hold because of 
the violation of the purely mixed strategy condition, there remains a possibility that the 
AHP Theorem holds in a variant form, as shown by this Example 3. 
 
5. Discussions 
 
5.1 Strategic decision making and tactical decision making 
  
 When a game is decomposed in a hierarchical manner as in AHP, the original game 



corresponds to strategic goal decision making, and each of decomposed game 
corresponds to tactical decision making. So the AHP Theorem shows how the strategic 
decision making is related to each of tactical decision makings 
 
5.2 Normalizing games 
 
 The AHP Theorem in Chapter 3 states that the integrated strategy x  is obtained by 
weighted average of each substrategy (or tactics) ( )ix  with weight iip ∆ , priority 
weight of each criterion multiplied by its game magnitude. That is, in order to form the 
integrated strategy from substrategies, we have to take the structure of payoff matrix 
under each criterion into consideration. 
 If you want a simpler form of AHP Theorem for game theoretic decision making, you 
need to normalize each payoff matrix ( )kA  by its magnitude 

( ) ( ) ( ) ( )kakakaka 21122211 −−+ . 
 
5.3 Game theoretic AHP in general 
  
 The game theoretic AHP for the case of 2-player zero-sum noncooperative 2×2 matrix 
game has been discussed in this paper. What would the generalized version of game 
theoretic AHP be? For the case of 2-player nm×  payoff matrix, it would be like; player 
Ⅰ(decision makerⅠ) has m  strategies ( m  alternatives) to choose from and playerⅡ
(decision makerⅡ) has n  strategies( n  alternatives) to choose from. This situation is 
described by an nm×  payoff matrix 1A  for playerⅠ and an nm×  payoff matrix 

2A  for playerⅡ. 
 When 0AA 21 =+ , it is a zero-sum game and when 0AA 21 ≠+ , it is a nonzero-sum 
game. Each payoff matrix 1A  or 2A  is estimated in consideration of N criteria. 
 
         ( ) ( ) ( )NA...2A1AA 1N12111 ppp +++=            (47) 
         ( ) ( ) ( )NA...2A1AA 2N22212 qqq +++=            (48) 
 
Here, ( )kk qp  is the priority weight on Criterion k  for player Ⅰ ( Ⅱ ), and 

( ) ( )( )kk 21 AA  is nm×  payoff matrix under Criterion k  for playerⅠ(Ⅱ). 
 One of the problems for the 2-player matrix game would be to investigate the 
relationship between equilibrium solutions for 1A  and 2A  and equilibrium solutions 
for each of ( )k1A  and ( )k2A .  
 
5.4 Game theoretic AHP in application 
 
If all the payoff matrixes under the criteria are known, the effectiveness of the AHP 
Theorem for XXX decreases, because the AHP Theorem only reconfirms the calculated 
result of taken strategies for the integrated payoff matrix. The AHP Theorem becomes 
effective when the payoff matrixes are not known, but the strategies under decomposed 
criteria and the importance of each criterion are known. This is a case where total 
judgment (or strategic decision) is made at company headquarter who knows only each 
local judgment (or tactical decision) made at each company division. 
 



6. Conclusion 
 Decomposing payoff matrix along hierarchy, AHP Theorem for game theoretic decision 
making has been established for the case of 2-player zero-sum noncooperative 2×2 
matrix game (Chapter 3). 
 Generalization and extention of presented AHP Theorem beyond the case of 2-player 
zero-sum noncooperative 2×2 matrix game is future research issues. Game theoretic 
ANP is also a future research theme, where individual subgames are related in a 
network manner. 
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