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ABSTRACT 

Interval judgments is a natural and easy way to encode uncertainty 
in pairwise comparisons. The major issue with interval judgments is how 
to derive prioritiesslfrom the interval statements, which captures decision 
makers' preference . There have been two types of approaches to deal with 
the problem: mathematical programming based methods and probabilistic 
methods. This pape5 introduces a new approach -- a Neural Networks based 
method. We formulate the process of interval judgments as a Neural 
Network model and then explore two ways of deriving the priorities using 
a revised Backproi#gation algorithm. The proposed method shows some 
potential advantages in the sense of less computation and a simpler 
mechanism in the modeling of the problem. The method is illustrated with 
numerical examples. The results of some comparative analysis with other 
current available approaches are also included. 

1. Introduction 

The basic purpose of dec sion analysis is to provide decision aids, such as a models, methods, 

techniques or processes to help decision makers to recommend actions. Ranking decision alternatives by 

means of pairwise comparisons according to criteria is one of the commonly used methods for such 

purpose. There are two basic issues that must be considered in this method. First, how to make and 

represent pairwise comparisons, specially when the criteria are of a qualitative nature. And second, how to 

extract the ranking form the paircyise comparison statements. 
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To compare object A with object B, the decision maker needs to answer the following questions: 

Given a particular shared criterion or property, which of the two objects is more important according to 

this criterion, and how much more important is it? Paired comparisons are particularly useful when there 

exist no judgmental standards to refer to. However, since the human mind has limited capabilities of 

information handling, we are always faced with incomplete knowledge, imperfect information, and an 

inadequate version of the true states of events. For instance, if we compare student A with student B with 

respect to their intelligence, or car A with car B according to their quality, it is usually difficult to tell 

exactly how much intelligent one student is than another or how much better one car is than another. We 

may be unsure of the true states of the objects we are comparing; we may not feel confident on our 

judgments, or we may be ambiguous about the "right" expression of our judgments. We need to find 

ways to elicit such comparisons with less requirements to decision makers, and encode the results with 

satisfactory accuracy, especially when faced with uncertainties. 

Our objective is to find ways of simplifying the pairwise comparisons process and develop 

algorithms the produce satisfactory priorities. These two issues are also primary focus of this paper. In 

addition to some general discussion about these basic issues, the particular method of pairwise 

comparison we are interested in here is the methods of interval judgments and•the typical algorithm for 

priority derivation we are going to propose is based on an Artificial Neural Networks. 

Our paper is organized in following format. Section 2 provides some general discussions about 

coping with uncertainty in pairwise comparisons. Section 3 gives the structure of interval judgments and 

also briefly reviews the current available interval judgments approaches. In Section 4, we include a brief 

introduction of Neural Networks and define the terminologies relevant to our later discussions. In Section 

5, we will show how to formulate the interval judgment problem as a Neural Network model and 

propose two ways of using a revised Backpropagation algorithm for priority derivation. Section 6 and 7 

address some conclusions of our study including a brief discussion of the comparison of the proposed 

algorithm with other available methods and lay out issues for future research. 

2. Encoding the uncertainty in pairwise comparisons 

0 
0 
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0 One way of reducing uncertainty is to suppress it by simplifying reality with assumed certainty. 

To capture the decision makers' preferences in pairwise comparisons, we need to cope with the 

uncertainty occurring in the processes of comparisons. Such need is also, perhaps, the single most 

prevalent and troublesome source of difficult in all decision making processes. One of the major tasks of 

decision analysis is to discover way to reduce the uncertainties to a reasonable level so that the choice or 

the decision can be readily made by the decision makers. 

The great majority of decision making methods fall in this group. When a decision maker simplifies the 

decision with the assumption of certainty, he does not necessarily make any claims about his knowledge 

O 
and capabilities, or about the uncertainty neglected. As long as the assumption that we have complete 

o information and that the decision being made with assumed certainty is reasonable and acceptable, people 
0 always tend to follow this approach. The Analytic Hierarchy Process (the AHP) [Saaty, 1977, 1986, 1988] 

o falls in this category. It assumes certainty in pairwise comparison. In the AHP, the decision makers are 
0 o required to express their judgments as pairwise comparisons from 1-9 scale [Saaty, 1980]. A single 

° numerical value (point judgment) is used for the judgment to represent the relative importance of the two 

O 
0 ..s.. 

objects being compared. 

o 
0 

Another technique for copi g with uncertainty is to express it explicitly by means of probabilities. 

0 We encode the decision makers' knowledge, attitudes or opinions about the likelihood of the events. Thus, 

0 
0 belief'. This is the approach used by utility theory. 

uncertainties are made explicit in terms of "relative frequencies" or the decision maker's "degree of 

o Another way of encoding tincertainty is using interval judgments [Saaty and Vargas, 1987]. This 

O approach involves using a range, or interval of values, to represent the uncertainty in the information used 

O by the decision maker. All the values in the range are equally acceptable, and the lower and upper bounds 

o 0 
of the interval indicates the mini um and maximum acceptable point estimation, respectively. Interval 

em 
judgments is a natural and direct ivay of eliciting uncertainty. In addition to allowing ambiguous judgment 

o statements, interval judgments also allow the skipping of any unwilling judgments, in which the interval 
0 o has the maximum permissible length. 

0 
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3. The basic structure of interval judgments 

When comparing n objects in pairwise manner with respect to a given criterion, a total of n x(n-

1)12 paired comparisons is usually required. The results of the comparisons can be arranged in an it 

matrix, whose entry in the position (i,j) indicates the judgment estimation for the comparison of the object 

i with the object j. This matrix is called a judgment matrix. In the AHP, the judgment matrix for point 

judgments is a positive, reciprocal matrix given by 

A = ( au ) icor

where au is a single numerical value and satisfies aii xafi = I (reciprocal property) and au> 0 (positive 

property) for all i and j. When a a x akj = au for all i, j and k, the judgment matrix is said to be 

consistent. The ratio scale is derived from the matrix A by solving the eigenvalue problem Aw = Xw for 

the principal right eigenvector [Sooty, 1980]. 

In the case of interval judgments, the entries of the judgment matrix are intervals: 

1 IL12,U12.1 
1121,U211 

_ [LnblIng [L,, U,,2] 

••• 

where Lu and Uu are the lower and upper bounds of the interval judgments, respectively. Corresponding 

to the reciprocal property for point judgment matrix, for any x e [Lit tle ] , there exists y e [L11, U] 

such that x xy = 1, where. Ufi = Lij-1 and Lig = Uif I, for all i and j. 

Given the interval judgment matrix I, the object is to provide some idea as to the alternative that 

should be selected. In general, we must find the vector w = (iv/ wn ) such that 

Li/ f(wi/wi) _1 Uu 

a 

0 

0 

0 

a 

a 
a 

0 
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0 0 0 0 0 
C 0 0 0 

where ff.) is some function of wi/wi . Saaty and Vargas [1987] proposed a simulation approach. Arbel 

[1989] proposed a mathematical plogramming (LP) approach. Salo and Hamaairier' [1990] extended 

Arbel's LP approach, and Arbel and Vargas [1990] proposed a general non-linear programming model to 

compute the lower and upper bounds of each components of w. .In this paper we put forth an artificial 

neural network model to estimate w and compare the result from this model with the result from Arbel's 

and Saaty and Vargas' models. 

4. The background of neural networks 

A neural network consists of a number of primitive processing units linked together via weighted, 

directed connections. Each unit receives input signals from all its incoming units via weighted incoming 

connections, and it responds by signaling to all of the units to which it has outgoing connections. (See 

Figure 1.)[McClelland and Rumelhart, 1986] There are three functions or rules in each unit of this 

system: (1) the net input functioi NET 1, represents the input signals to the unit i, and it is uivally a 

function of the weighted incoming messages from all its incoming units; (2) the activation function, A 

represents the current "state" or "activation lever of the unit, and it is determined by the inputs it received; 

and (3) the activation of the unit that determines its output activity, O. 
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unit i 

Figure 1. Processing units and connections of the neural networks 

The particular neural networks we use here is called a layered feedforward network (See Figure 

2.). These networks have three special features: (1) The input units are always the bottom layer, and the 

output units are the top layer. The inputs in the input layer are external input to the network, and the outputs 

in the top layer actually represent the output of the network; (2) The flow passes through the network only 

in feedforward fashion; and (3) No connections exist within a layer, i.e., there are no recursions allowed in 

the networks. 

output layer: 

hidden laver: 

input layer: 

Figure 2. Feedforward layered network 

Let k be the number of input units and in the number of output units of a network. Given the set 

a 
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0 

0 

of external inputs: I g Rk (k-tuple vector space) and the set of output units 0 g Rm, A network p= 

(N, I, 0, C) can be defined by dis oint sets N and I, where I is the input units, and a subset 0 g N i 

0 of output units. The connections are given by the set C (N x N of connections. With each 

0 

0 

network p, there is a function 

indicates the states of the network 

from the unit i to unit j. We can 

columns indexed by the set N of 

C defined on the set of connections, C —> R. The function C 

. For a connection (4j) e if , we denote cfi as the connection strength 

se a matrix C to represent connection strength values with rows and 

nits. The entry in the position (4]) of the matrix is given by cfi if 

(i,j)e C and 0 otherwise. The feedforward condition of the network implies that C is a lower triangular 

matrix with zeros in the main diagonal. Given the feedforward condition the network p determines a 

function or a mapping: FNN I -4 0. 

One popular way of finding such a mapping is the Backpropagation algorithm, which determines 

a point Co in the connection strength value space such that the determined network can produce the 

desired output.[McClelland and Rumelhart, 1986] If we use the Backpropagation algorithm, we have 

desired outputs: T g Rm corresponding to inputs I C Rk. The objective is to determine a network p 

whose mapping FNN p  : I —* 0 approximates the mapping U: I T which converts the real inputs to 

the real outputs. With the Backprcpagation algorithm, this is achieved by the process of adjusting the state 

(connection strength) of the network until expected accuracy is reached. Such process is called "learning" 

or "training" of the network. 

o The Backpropagation algorithm requires a set of training patterns (examples we learn from), which 

0 
0 

0 
0 
0 
0 
0 
0 

0 

is the a subset of the Cartesian product, i.e., Pi x Pr g Ix T. Each pattern is a compounded point (ip, 

tp) e /3/ x PT, where ip is the input vector and tp e PT is the desired output vector. Presentation of a 

pattern to the system corresponds to activating a set of input units.These units pass their outputs along 

their connections either directly to the output unit or to the intermediate (hidden) units, that relay them 

233 



0 

onward eventually terminating in output units. The activation pattern over the layer of output units 

corresponds to some particular response of the system to that input. After receiving feedback regarding the 

desired output pattern for each input pattern the system adjusts the connections strengths to have that. input 

produce an output closer to the one desired. By repeatedly cycling through a set of desired input-output 
0 

pairings, the system "learns" just those connections strengths that will achieve the closest match (of which 0 
0 

it is capable) to the input-output pairings. The measure of the accuracy of the network (error function) 

employed by the Backpropagation algorithm is the sum of the squares of the differences between the 

actual and desired activations at the output units given by 
0 I 

By minimizing the error function through a gradient descent direction of cji , we can expect to come 

arbitrarily close to U (if such connection strength values exist). The connection strength obtained in such 

manner is termed a least mean squares (LMS) solution. Such "error correcting" learning rule for 0 

adjusting the connection strengths has been called the LMS rule, or the delta rule. 

5. A neural network model for interval judgments 

With the neural network described above, we can model the process of interval judgments as a 
0 

three layered feedforward network. The input layer consists of the bounds of the interval judgments Lit 0 
and Uu . The hidden layer represents the pairwise comparisons, and the number of hidden units is the 

total number of pairwise comparisons required. The output layer represents the m objects and the output 

of each output unit is the priority of the object that the unit represents relative to the others. The neural 

network for comparing four objects is given in Figure 3. The basic assumptions of this network design 0 

are as follows: 

The inputs units are linear:. 0 

A 1• = NET • and 0 = Ai 

for all the units in the input layer. 
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0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

i. e 

0 
0 

0 

0 
0 
0 

0 
0 

0 

0 

0 
0 
0 
0 
O 

output layer, we measured the difference between the teachers and the functions of the actual outputs in the 

0 
O 

output layer. It is clear that the resrlt of minimizing this error function will actually force the ratio of 01/ 

0 Of as close to the corresponding racher tu as desired. The basic idea here is to use the geometric mean 
0 value of each judgment interval as the teachers to train the network, to find a group of connection strength 

O values for which the ratio of outputs from each pair of output units fall within the corresponding 

O judgment interval given by the exiemal inputs, i.e., Lu _1 0i/Of_cUij. 
0 

0 
0 
0 
0 

0 

0 

For any unit k in the hidden and output layer, we have: 

NETk

Ak = 

= Ei cki0i; 

/(1 e -NETk i- Ok)

where Ok is the threshold 
olf

unit k. The activation function of this type is called the logistic 

function and has the properties of monotonicity and differentiability. 

The connections in the netJork can be positive, negative or zero. For ease of implementation, we 

assume that the network has full connections and treat the connection (i,j) C as nonmodifiable with 

zero connection strength. 

The network thus defined d termines a mapping FNN p : I —) 0 , where I CR24 and 0  R4.

We expect to train the network such that it can produce the corresponding priority vector w = (w/ , w2 , 

J...,wn ) for each interval judgmen matrix input. This implies that we expect to approximate the mapping 

U: .1-4W by the artificially trained mapping FNN p : I-4 0. 

Because of the particular 

follows: 

purpose of using neural networks, we redefine the error function as 

E=L IE 
P • • zoi 

where t1 = (L11 x U..1/) 112, is th 

means that instead of considering 

etc" 

"target ", "teacher", or the desired pattern for Oi/ 0. This revision 

error as the distance between the teachers and the actual outputs in the 
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Output layer: 

Hidden layer 
(comparison of 
object i with j) 

Input laver: 

4 
w2 

(priority) 

0000000000000000000000 
112 U12 L13 U13 

4 
• • • • • • 

(interval bounds) 

1.43 U43 

Figure 3. A neural network model for 4x4 interval judgments 
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0 
With the same idea of the 

using the gradient: 

Backpropagation algorithm, the connections strengths are changed 

Apcji = x —raEp x  
DEp aNET

ni
acji DNETpj acji 

where 31) = - dEp / dNET pi which is different from the traditional backpropagation algorithm, and ri is 

the leaning rate denoting the adjusting scale of the connections. 

There are two ways of using this revised backpropagation algorithm to derive the priority for the 

interval judgments: 

Method 1: Using the Backpropa ation for priority derivation of a single interval 

judgment matrix 

In this method, we assume that training set contains only one pattern. With the same process of 

training the network, we repeatedly present the same pattern to the network and adjust the connection 

strengths to reduce the error. Here our only concern is the production of the desired priority for this 

particular interval judgment matrix and the final state of the trained network is not important. The training 

of the connection strengths is just a mechanism used to find the desired output for the given interval 

judgment matrix. 

Method 2: Using the Backpropagation to train the network for priority derivation of a 

group of judgmelt matrices 

This method requires reasonable sets of patterns to train the network as in the normal 

backpropagation algorithm applications. Our objective is to find a network state (connections strengths) to 

approximate the mapping U: / -4 W. If this network state is reached, we can expect to use this network 

to generate the desired priority for any interval judgment inputs in the group. It is clear that we can not 

expect a single network to approx mate all the possible judgment matrices. Our experiments also show the 

necessity of grouping the inputs appropriately to obtain the desired accuracy. We provide the results of our 
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simulation for a group of consistent interval judgment matrices in the next section. More careful 

investigation and intensive experimentation is necessary. 

6. Simulation results 

A number of simulations were performed to verify the validation and the generality of the methods 

proposed. All our experiments are performed on the UNIX system mainframe with the revised PDP 

software, written in C, Which is originally provided by the PDP research group [McClelland and 

Rumelhart, 1988]. For both methods, we experimented with two different ways of "teacher" 

specifications, the arithmetic mean and the geometric mean of the bounds of the judgment intervals. The 

arithmetic mean reaches the solutions a little faster than the geometric mean. However, the geometric 

mean provides better interpretation of the results because of its relationship to the eigenvectors. We also 

investigated three types of error functions: Least Mean Square (LMS), Logarithm Least Mean Square 

(LLMS) and Hilbert's metric. The LMS is the most common error expression in most applications of the 

Backpropagation algorithm. However, from our experience, it is quite easy to get trapped in local 

minimima and it is hard to move to global optima during the process of training. In addition, because the - 

algorithm allows the errors to grow rather than decrease in at least one dimension, it seems to-move in the 

wrong "direction" in the connection space instead of in the direction of the total error reduction. With the 

proper learning parameters and initializations, we succeeded in the cases we investigated. However, such 

successes are hard to predict in general. The LLMS converges to the correct solutions easier. There is, of 

course, no guarantee avoiding the local minima because the LLMS leads basically still a nonlinear 

function. Our experiments show that the LLMS method is obviously better than the LMS method for both 

the speed of convergence and the quality of the solutions. However, It seems to us more appropriate, 

theoretically, to use Hilbert's metric [Kohlberg & Pratt, 1982] as the error expression because it is the 

metric of the eigenvector. The implementation of this idea is currently in the stage of algorithm design and 

coding, and it will be part of our follow up research. For the data format, we used both point judgment 

data, since they are special cases of the interval judgments and easier to check the correctness of the 



0 

0 

solutions, and interval judgment ijnputs. We also examined the methods for: consistent data only, 

inconsistent data only and combinations of both. 

To illustrate the algorithms, we use for Method 1 the same example used in Arbel and Vargas' s 

[1990]: 

1 [2,5] [2,4] [1,3] 
1 [1,3] [1,2] 

1 [1/2,1] 
1 

0 
0 
O The solution by the Linear Programming approach is given by: 
0 

wit = (0.4679, 0.2056, 0.1470, 0.1794). 
0 
0 The results from the simulation method proposed by Saaty and Vargas [1987] are given by: 
0 

o minimum 
O 0.3697 
0 
O 0.1501 
o _0.0929 
O 0.1332 

averaee maximum 
0.4702 0.5517 
0.2183 0.2895 
0.1318 0.1891 
0.1842 0.2600 

O The result from the implementation of our proposed Method 1, with the arithmetic mean target and the 

0 

LMS method after 90 presentations of the data is given by: 

wT = (0.4355, 0.2185, 0.1523, 0.1936). 

This result is close to Arbel and Tarps' and satisfies the property that the ratios of wi /wi  fall into the 

corresponding intervals judgments with only one deviation of less than 0.002. With the geometric mean 

of the teacher and the LLMS method, the results are given by: 

without any deviation. 

wT = (0.4501, 0.2128, 0.1396, 0.1975), 
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For the logarithm error function and the geometric mean, we use point judgment matrices to 

estimate the approximation of the solutions to the corresponding principal eigenvectors. For the following 

consistent matrix: 

1 3 6 3 
1/3 1 2 1 
1/6 1/2 1 1/2 
1/3 1 2 1 

we obtained the solution wT = (0.5461 0.1825 0.0904 0.1810) with a total squared error equal to 0.0028 

after 50 presentations of the matrix. 

For Method 2, we trained the network with a pattern set (of size 10) of consistent interval 

judgment matrices with the logarithm mean square function and geometric mean targets. A total error of 

0.08857 was obtained after 450 of the presentations of each interval judgment matrix data. The connection 

strengths are given by: 

hidden laver 

input laver 
lower bounds upper bounds 

(1) -1.230123 -2.675019 
(2) -1.734057 -2.944314 
(3) -3.581413 -11.58413 
(4) -3.011533 -1.667727 
(5) -1.311551 -4.631078 
(6) -1.315490 -2.623856 
(7) -0.515770 -1.588770 
(8) -0.980903 -3.141418 
(9) -0.610185 -1.945769 
(10) -1.620738 -3.990551 
(11) -1.904183 -3.444780 
(12) 0.559310 -1.464178 
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0 

o 
(1) 

output laver 

(4) thresholds (2) (3) 

0 (I) 1.689p03 5.064165 0.000000 0.000000 -1.009856 
(2) 2.6721118 0.000000 2.473513 0.000000 -0.615173 

0 (3) 3.384423 0.000000 0.000000 2.938550 -4.021264 
(4) 1.389909 -0.376752 0.000000 0.000000 -5.774281 

0 (5) 0.000000 2.130989 -0.435712 0.000000 -1.464055 
0 hidden laver (6) 0.000000 2.114039 0.000000 0.822433 -1.197417 

(7) 2.114224 0.000000 -1.874608 0.000000 -1.527127 

0 (8) 0.000000 0.467882 -0.031106 0.000000 -2.906212 
(9) 0.000000 0.000000 -0.006308 0.369275 -2.190239 

0 (10) 1.736171 0.000000 0.000000 -0.440586 -3.517609 
(11) 0.000000 2.583185 0.000000 0.264742 -3.291111 

0 
0 (12) a 000090 0.000000 2.087249 -1.000665 0.430566 

0 
thresholds 8.44 033 -a239755 -a 956069 -a 174941 

0 
We now use these connections to generate the priority vector for two matrices. One of them, used 

0 by Arbel and Vargas [1990] -belonLed to the training set. The priority vector is given by 
0 
0 wT = (0.4592 0.2056 0.1388 a1964). 
0 
0 The second matrix given by: 
0 
0 [1,4] [5,6] [1,4] 
0 [1/4, 1 ] 1 [ 1,2] [1/2,2] 
0 1/6,1/5 1/2, I ] 1 [ 1/3, 1 ] 

0 _ [1/4,1] [1/2,2] [1,3] 1 

0 
0 
0 which does not belong to the training set, and the priority vector is given by 

0 wT = (0.4736 0.2008 0.1144 0.2112). 

0 
0 
0 7. CONCLUSION 

0 
0 
0 
0 
0 
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We have described a new method to derive priorities for interval judgments matrices. With the 

proposed method, the problem can be modeled and analyzed with a simple mechanism and handled with 

relative ease. Once a neural network model is constructed and implemented by the training process, it is 

easy to experiment with the network to ascertain its behavior under different assumptions and a variety of 

input patterns. Using the simulation of the neural network, it is possible to obtain approximate solutions to 

the problems, especially in the inconsistent case, in which the other available methods become infeasible 

or difficult from a practical standpoint. A shortcomings of the neural network approach is that the 

solutions obtained are only approximation. In addition, it could be expensive, in the sense of 

computational time, because of problems we encountered with local minima. 
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