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1. Introduction 
 

In evaluating n competing alternatives A1,...,An under a given criterion, it is natural to use the framework of 

pairwise comparisons represented by a nxn square matrix from which a set of priority values for the alternatives is 

derived. The basic assumptions are that there exist priority values v1,...,vn such that vi represents the preference 

intensity of Ai (i=1,...,n) and the decision maker is able to provide tij (>0) as the answer to a simple question on 

pairwise comparison of vi with vj for all i,j=1,...,n. The priority values v1,...,vn are assumed to be measured in some 

ratio scale. Then tij is an approximation of vi/vj provided by the decision maker, with some errors, for all i,j=1,...,n. 

The nxn matrix T=[tij] is the reciprocal pairwise comparison judgment matrix with unity along the diagonal. By 

making the matrix reciprocal (that is, tij=1/ tji for all i,j =1,...,n), the number of paired comparisons is n(n-1)/2. 

The problem is to determine w1,...,wn which estimate the priority values v1,...,vn respectively from T. The 

matrix T is said to be consistent if tijtjk=tik for all i,j,k=1,2…n. If T is consistent, then the rank of T is one and the 

priority values, unique up to a positive multiple, are readily given by any column of T. But in general, T is 

inconsistent as v1,...,vn are not explicitly known to the decision maker and thus there is a need for a method to 

estimate the priority values. The main challenge is how to reconcile the inevitable inconsistency of the pairwise 

comparison matrix elicited from the decision makers in real-world practical applications. 

Many methods for estimating the priority values from the pairwise comparison judgment matrix have been 

proposed and their effectiveness comparatively evaluated (Basat 1991, Blankmeyer 1987, Bryson 1995, Budescu, 

Zwick & Rapoport 1986, Buede 1996, Carmone, Kara & Zanakis 1997, Carriere & Finster 1992, Chandran, Golden 

and Wasil 2005, Choo and Wedley 2004, Cook & Kress 1988, Fichtner 1986, Genest & Rivest 1994, Golany & 

Kress 1993, Herman & Koczkodaj 1996, Jensen 1984, Krovak 1987, Lin 2006, Lin 2007, Lootsma 1996, Mikhailov 

2000, Mikhailov 2004, Ra 1999, Saaty & Vargas 1984, Williams & Crawford 1985, Zahedi 1986, Zanakis & 

Solomon 1998). It appears that none of the estimating methods for deriving priority vectors is universally superior 

over the others in all respects. Usually each method performs best in its own underlying criterion of effectiveness. 

 
In this paper, we compare seven direct methods for estimating ratio scaled priority values from reciprocal 

pairwise comparison judgment matrices. The right eigenvector method (Saaty 1980), geometric mean method 

(Crawford & Williams 1985), normalized column mean method (Zahedi 1986), logarithmic least absolute error 

method (Cook & Kress 1988) and weighted least square method (Chu, Kalaba & Spingarn 1979) are selected 

because they can be solved easily and were shown to have good effectiveness and desirable analytical properties 

(Barzilai 1996, Budescu, Zwick & Rapoport 1986, Fichtner 1986, Golany & Kress 1993, Krovak 1987, Lin 2007, 

Saaty & Vargas 1984, Zahedi 1986). The simple column mean method and the chainwise geometric mean method 

(Ra 1999) are selected for its utter simplicity. 

A simulated experiment is conducted to compare these methods under four measures of effectiveness: 

mean square error (MSE), mean absolute deviation (MAD), mean central conformity (MCC) and mean rank 

violation (MRV). These four effectiveness measures were also used in previous studies (Choo and Wedley 2004, 
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Lin 2007, Zahedi 1986, Golany and Kress 1993). The problem sizes used in our simulation study are n=4,5,7. It is 

assumed that tij=(vi/vj)+eij and the error terms eij (i,j=1,...,n & i>j) have independent normal distributions with zero 

means, where T=[tij] is the nxn reciprocal pairwise comparison judgment matrix elicited from the decision maker 

and v1,...,vn are the true priority values. Unlike previous studies in which v1,...,vn were randomly generated, we 

adopted a novel design with specific types of priority vectors v=[v1,...,vn] selected to represent the harder cases of 

"no obvious best alternative" and the easier cases of "two equal best alternatives" in A1,...,An. 

The seven estimating methods to be evaluated are described in some details in the next section. The four 

effectiveness measures used to evaluate the methods are given in section 3. In section 4, we describe the design of 

the simulation experiment. The simulation results are presented in section 5. Finally we give some concluding 

remarks. 

 
2. Review of Seven Estimating Methods 
 

If the pairwise comparison judgment matrix T=[tij] is error free, then the true priority vector v=[v1,...,vn] is 

readily given by any column of T. However, practical or real life judgment matrices contain inconsistencies and thus 

the estimated w=[w1,...,wn] is only "close" to v=[v1,...,vn]. Most estimating methods of priority values use column or 

row information to minimize some form of distance between [tij] and [wi/wj] (Choo and Wedley 2004). A notable 

exception is the right eigenvector method that uses stabilized calculations from the interaction of row and column 

information.  

Most methods have the following desirable properties: (a) preserve ranks strongly: if tik≥tjk (k=1,...,n), then 

wi≥wj; (b) correctness in the error free case: if T is error free, then [w1,...,wn] = [v1,...,vn]; (c) smoothness of result: 

small changes in T do not result in huge changes in [w1,...,wn]; (d) comparison order invariance: [w1,...,wn] is 

independent of the order of the alternatives compared in T. 

 There are many direct methods for deriving ratio scaled priority vectors from reciprocal pairwise 

comparison matrices. Some of these direct methods are extended by adding more desirable constraints or by 

combining them into hybrid models (Chandran, Golden and Wasil 2005, Jones and Mardle 2004, Lin 2006, 

Mikhailov 2004). We now describe briefly the seven methods to be evaluated. 

 
The Right Eigenvector Method (REV) 

 This method was recommended by Saaty (1980) using Tw=λmaxw, where λmax is the principal right 

eigenvalue of T, to model the mathematical fact that Tv=nv is true when T is consistent. The REV method satisfies 

desirable properties (a), (b), (c) and (d). It always yields a unique priority vector. The normalized REV represents 

the relative dominance of the alternatives and is estimated by 
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1Lim  , where eT = [1,...,1] is the unit n-vector. 

 
The Geometric Mean Method (GM) 

The original idea of this method was fully adapted and developed by Crawford and Williams (1985). The 

fundamental principle of this method is to minimize the sum of square distances of the [log(tij)] from [log(wi/wj)] 
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since tij ≈ wi/wj. We then have log(tij) ≈ log(wi)-log(wj) ⇒ [log(wi)-log(wj)-log(tij)] 2 ≈ 0. The model is to determine 

[w1,...,wn] which minimizes �i�j[log(wi)-log(wj)-log(tij)]2 subject to ∏iwi=1. The optimal solution, unique up to a 

positive multiple, is given by the geometric mean of the row elements of the matrix T: wi = (�jtij)1/n, i=1,...,n. 

Crawford and Williams (1985) proved the validity of this method and showed the uniqueness of the optimal 

solution. The GM method satisfies desirable properties (a), (b), (c) and (d).  

 
The Chainwise Geometric Mean Method (CGM) 

To reduce the number of pairwise comparisons, Ra (1999) developed CGM method in which only n pairs 

Ri=wi/wi+1 (i=1,...,n-1) and Rn=wn/w1 are compared. The direct estimate di and indirect estimate Ii of Ri are given by: 

di=ti,i+1 (i=1,...,n-1) and dn=tn1 are elicited directly from the decision-maker, while Ii is indirectly estimated as 

Ii=di/∏jdj for i=1 to n. Then Ri is estimated by the weighted geometric mean Gi = di
(n-1)/nIi

1/n = di/(∏jdj)1/n of di and Ii. 

Finally [v1,...,vn] is estimated by: wi = GiGi+1...Gn-1 (i=1,...,n-1) and wn=1 which is then normalized to sum to unity. 

The CGM method satisfies desirable properties (b) and (c).  

 
The Normalized Column Mean Method (NCM) 

This estimating method is called the mean transformation method by Zahedi (1986). It is based on the fact 

that the priority vector is estimated by j-th column of T which can be normalized (sum to unity) to [t1j/(∑ktkj),..., 

tnj/(∑ktkj)], for j=1,...,n. By taking the average of these normalized columns as priority vector, [w1,...,wn] is given by 

wi = (1/n)∑j(tij/(∑ktkj)), i=1,...,n. It is true that [w1,...,wn] minimizes the distance ∑i∑j(tij/(∑ktkj)-wi)2. The NCM 

method satisfies desirable properties (a), (b), (c) and (d).  

 
The Simple Column Mean Method (SCM) 

SCM is based on the fact that the priority vector is estimated by j-th column of T, j=1,...,n. By taking the 

average of these columns as priority vector, [w1,...,wn] is given by wi = (1/n)∑jtij, i=1,...,n. Note that the only 

difference between the NCM method and SCM method is that the columns of T are normalized to sum to unity in 

NCM before averaging. The SCM method satisfies desirable properties (a), (b), (c) and (d). 

 
The Weighted Least Square Method (WLS) 

Chu, Kalaba & Spingar (1979) introduced the WLS method to derive the priority vector. It is based on 

sound algebraic equations, which are conceptually easy to understand. It follows from tij ≈ wi/wj ⇒ tijwj ≈ wi ⇒ 

(tijwj-wi)2 ≈ 0 that [w1,...,wn] should minimize ∑i∑j(tijwj-wi)2 with ∑iwi=1. The WLS method satisfies desirable 

properties (a), (b), (c) and (d). The final solution can be expressed in a matrix form (Chu et al 1979). 

 
The Logarithmic Least Absolute Error Method (LLAE) 

The underlying idea of the LLAE method (Cook & Kress 1988) is tij ≈ wi/wj ⇒ log(tij) ≈ log(wi)-log(wj) ⇒ |log(wi)-

log(wj)-log(tij)| ≈ 0. It follows that [w1,...,wn] should minimize ∑i∑j|(log(wi)-log(wj)-log(tij)|. We note that [w1,...,wn] 

can be multiplied by any positive number without changing the total deviation. Thus we may assume that wi>1, 
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i=1,2,...,n. This minimization problem can be rewritten as a linear goal programming problem. The LLAE method 

satisfies desirable properties (a), (b) and (d).  

 
3. Four Effectiveness Measures for Evaluation 
 

In this paper, we will evaluate the seven selected estimating methods based on the following four 

effectiveness measures: (1) mean square error (MSE), (2) mean absolute deviation (MAD), (3) mean central 

conformity (MCC), and (4) mean ranking violation (MRV). These four effectiveness measures were also used in 

previous studies (Choo and Wedley 2004, Lin 2006, Lin 2007, Zahedi 1986, Golany and Kress 1993). For any true 

priority vector [v1,...,vn] and tij≈vi/vj, (i,j=1,...,n), different estimating methods would give different [w1,...,wn] as 

approximation of the priority vector. An estimating method is deemed to be better if its solution vector [w1,...,wn] is 

"closer" to [v1,...,vn]. We now describe the four effectiveness measures. Note that we have scaled the measures by 

100 to avoid dealing with small decimal numbers. 

 
 Mean Square Error (MSE): MSE = 100∑i(wi-vi)2/n 

 Mean Absolute Distance (MAD): MAD = 100∑i|wi-vi|/n 

 Mean Central Conformity (MCC): Let [m1,...,mn] be the average of the solution vectors from the seven 

estimating methods applied on T=[tij]. An estimating method does not conform with the other six estimating 

methods if the mean absolute deviation 100∑|wi-mi|/n between its solution vector [w1,...,wn] and the average solution 

vector [m1,...,mn] is large. 

 Mean Ranking Violation (MRV): A ranking violation occurs in [w1,...,wn] when vi>vj and wi<wj. MRV = 

(number of ranking violations)/n  

 
4. Simulation Design 
 

A simulation experiment is conducted to evaluate the seven selected estimating methods under the four 

selected effectiveness measures. The problem sizes used in the simulation study are n=4,5,7. These are deemed to be 

sufficient from a practical point of view. It is assumed that tij=(vi/vj)+eij and the error terms eij (i,j=1,...,n & i>j) have 

independent identical normal distributions with zero means and standard deviation σ, where T=[tij] represents the 

nxn reciprocal pairwise comparison judgment matrix elicited from the decision maker and v1,...,vn are the true 

priority values. The normal distribution for eij is truncated at -vi/vj and vi/vj to avoid negative tij values. Unlike 

previous studies in which v1,...,vn were randomly generated, here specific types of priority vectors [v1,...,vn] are 

selected to represent the harder cases of no obvious best alternative and the easier cases of two equal better 

alternatives in A1,...,An. In particular, we use [1/n,...,1/n] to represent the harder case of "no obvious best alternative" 

and [2/(n+2),2/(n+2),1/(n+2),...,1/(n+2)] to represent the easier case of "two equal best alternatives". A wide array of 

real life or practical problems fall into these two cases which are in clear contrast to cases with a single dominating 

alternative. Two σ values (σ=0.1, 0.3) are used to control the error terms eij. For each scenario ("no obvious best 

alternative" or "two equal best alternatives"; σ=0.1 or 0.3): 200 simulated matrices for T=[tij] are generated and the 

solution vectors from T by the seven estimating methods are derived for n=4,5,7. The corresponding effectiveness 
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measures of the methods are computed and the average effectiveness measure of the 200 replications is then 

calculated for each method. The total number of replications is 2,400. 

 

 In our preliminary runs, we explored using "m obvious best alternatives" for true priority vectors 

v=[v1,v2,...,vn] with different m. We also considered using the true priority vector [k/(n+2k-2),k/(n+2k-2),1/(n+2k-

2),...,1/(n+2k-2)] for "two equal best alternatives" with k=2,3,...,9. To control the scope of the simulation, we 

decided not to use m and k as control parameters. The cases with m=0, m=2 and k=2 are deemed to be more 

interesting and included in the simulation because they have less obvious solutions. In particular, we did not include 

the easiest case of "one obvious best alternative". 

 

 All the seven methods are easy to solve and solutions can be computed by using Microsoft EXCEL. The 

Solver add-in was used to compute solutions for the LLAE method which is a linear goal programming model. The 

Data Table in EXCEL was be used to execute 200 simulations for each scenario except LLAE for which Solver 

Table (http://www.indiana.edu/~mgtsci/SolverTable.html) was used to get all the solutions systematically.  

 
6. Simulation Results 
 

The four main factors of the simulation experiment, listed in the order of importance, are: (1) seven 

different methods, (2) two choices of true priority vectors, (3) two choices of standard deviations for the normally 

distributed random errors, and (4) three choices of matrix sizes. The simulated results are presented in carefully 

selected two factor tables. The results for n=4, n=5 and n=7 are combined in Table 1 and Table 2. For the case of 

"no obvious best alternative", Scenarios #1 and #2 have σ=0.1 and σ=0.3 respectively. For the case of "two equal 

best alternatives", Scenarios #3 and #4 have σ=0.1 and σ=0.3 respectively. The results for the four scenarios are 

combined in Table 3. The results for all scenarios and all matrix sizes are combined in Table 4. 

 

 The entries in Table 1 and Table 2 are the mean effectiveness measures of 600 replications with equal 

sample size of 200 each for n=4,5,7. The entries in Table 3 are the mean effectiveness measures of 800 replications 

with equal sample size of 200 for each of the four scenarios. The entries in Table 4 are the mean effectiveness 

measures and the t-test values of all the 2,400 replications. In all tables, the “B” superscript in a row signifies the 

method with the best performance in the effectiveness measure for that row while the “W” superscript signifies the 

worst. A one-sided t-test at significance level of 90 percent (α=0.10) is used to compare the performance of each 

method with the best performing method. A method is significantly worse than the best method under each 

effectiveness measure unless it has an “n” superscript which means that it is not significantly different. We highlight 

the noticeable results for each scenario below.  

 
"No obvious best alternative" Scenarios 
 

From Table 1, we can see that the GM and NCM are the best methods under both the σ=0.1 and σ=0.3 

scenarios for random error. NCM is either the best or tied for best method in 6 of 8 tests. GM is either the best, tied 
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for best, or insignificantly different from the best method in 7 of the 8 tests. Here, we are using the symbol “n” in the 

tables, to indicate that we cannot statistically differentiate the results of a method from the best method of the row. 

For example, the MRV results of the GM, SCM and WLS methods under the σ=0.1 scenario are insignificantly 

different from the best method (NCM).  

 

In all other cases, the methods are significantly inferior (�=0.1) to either NCM or GM, the best methods. 

Although REV, SCM and WLS come close to matching the best method, they are significantly inferior. CGM and to 

a lesser extent LLAE are markedly inferior when compared to the effectiveness measures of other methods. 

 
"Two equal best alternatives" Scenarios 
 

The pattern for “two equal best alternatives” is similar to the results for “no obvious best alternative”. From 

Table 2, we can see that GM is either the best method or insignificantly different from the best method in 7 of 8 

tests. NCM is second best overall, being best on two tests and insignificantly different from the best on one test. For 

the minor perturbation scenario (σ=0.1), SCM is the best method on one measure and insignificantly different from 

the best on two measures. For the other scenario with bigger perturbation (σ=0.3), WLS and LLAE are each the best 

method for different measures. Again, the CGM method is markedly inferior as compared to the other methods. 

 

We note that the mean effectiveness measures for REV are better than other methods that are 

insignificantly different from the best method (NCM) in the case for MRV in scenarios 1 and 3, and MAD in 

scenario 3. These anomalies can be explained in part by the fact that REV has smaller variance. The t-test statistics 

of REV are 1.73, 1.50 and 1.34 (not shown in the tables) for MRV in scenarios 1 and 3 and MAD in scenario 3, 

respectively. These t-test statistics are larger than the critical value of 1.28 and thus REV is significantly inferior to 

the best method (NCM). The t-test statistic of WLS for the MRV measure in scenario 1 is 0.894 and the t-test 

statistics of SCM for MAD and MRV measures in scenario 3 are 0.51 and 0.69 respectively. Thus, they are 

insignificantly different from the best method (NCM). If REV had larger variances, then it too might have been 

insignificantly different from the best method (NCM). The simulated results show that REV had a smaller variance 

and was still less accurate. This means it was consistently less accurate for those particular cases.  

 
Table 1. Simulated Results for “no obvious best alternative” 

 
 Measure REV GM CGM NCM SCM WLS LLAE 

MSE 0.00632 0.00631n 0.01442W 0.00630B 0.00633 0.00640 0.01000 
MAD 0.60739 0.60680n 0.94487W 0.60659B 0.60808 0.61149 0.77329 
MCC 0.11920 0.11837B 0.62916W 0.11881 0.12131 0.12415 0.37787 

Scenario #1 
(σ=0.1) 

MRV 0.97667 0.97500n 3.87333W 0.97167B 0.97500n 0.98500n 2.12667 
MSE 0.10395 0.08570 0.18629W 0.08456B 0.13119 0.11273 0.10757 
MAD 2.25643 2.14757n 3.27624W 2.14675B 2.37912 2.41744 2.49306 
MCC 0.47678 0.40030B 2.12436W 0.43598 0.65100 0.76766 1.36673 

Scenario #2 
(σ=0.3) 

MRV 7.49500 7.35500B 9.25167W 7.35500B 7.42500 7.82833 7.99167 
B Best one in row; W Worst one in row; n Those not being rejected by 90% Significance Test 
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Table 2. Simulated Results for “two equal best alternatives” 

 Measure REV GM CGM NCM SCM WLS LLAE 
MSE 0.00356 0.00356 0.01090W 0.00356 0.00344B 0.00400 0.00423 
MAD 0.45366 0.45357n 0.80858W 0.45347B 0.45555n 0.45855 0.49570 
MCC 0.08086 0.08023B 0.50460W 0.08114 0.16708 0.14979 0.28899 

Scenario #3 
(σ=0.1) 

MRV 0.16500 0.16000B 1.30167W 0.16000B 0.17000n 0.18000 0.26500 
MSE 0.05353 0.04509n 0.14159W 0.04530n 0.06441 0.06347 0.04463B 
MAD 1.57810 1.51327B 2.73743W 1.52489 1.63058 1.63659 1.56747 
MCC 0.30895 0.29005B 1.63274W 0.30589 0.63220 0.60882 0.98297 

Scenario #4 
(σ=0.3) 

MRV 2.57333 2.51667n 4.10667W 2.54000 2.81333 2.46667B 2.61500 
B Best one in row; W Worst one in row; n Those not being rejected by 90% Significance Test 

 
Results by Matrix Size  
 

 In Table 3, simulated results for different matrix sizes are reported. We can see that GM tends to 

be best for all sizes while CGM is worst for all sizes. NCM is fairly good for n=4 and n=5. We note that as matrix 

size increases, MSE and MAD tend to decrease while MRV tends to increase. MSE and MAD are inversely related 

to matrix size because smaller priorities are produced with larger sized matrices. And with smaller priorities, MRV 

will be lager because there will be greater opportunity for ranking violations.  

 
Table 3. Simulated Results for Different Sizes 

 Measure REV GM CGM NCM SCM WLS LLAE 
MSE 0.05741 0.05539 0.10202W 0.05428B 0.06023 0.06895 0.06263 
MAD 1.56440 1.54803 2.11633W 1.54016B 1.57662 1.65738 1.66533 
MCC 0.20616 0.18917B 1.09004W 0.19903 0.39437 0.40410 0.81638 

n=4 

MRV 1.50625 1.48125B 1.89000W 1.48625n 1.48875n 1.52625 1.60875 
MSE 0.04055 0.03474n 0.08942W 0.03432B 0.04918 0.04751 0.04622 
MAD 1.24946 1.20757B 1.95763W 1.20852n 1.30157 1.30201 1.47052 
MCC 0.25689 0.23633B 1.26285W 0.25138 0.40445 0.42691 0.85994 

n=5 

MRV 2.33500 2.32125n 3.46250W 2.31375B 2.38125 2.39375 2.96875 
MSE 0.02757 0.01536B 0.07346W 0.01619 0.04462 0.02350 0.01597n 
MAD 0.85782 0.78531B 1.75139W 0.80010 0.92682 0.88365 0.86129 
MCC 0.27630 0.24122B 1.31526W 0.25595 0.37988 0.40681 0.58611 

n=7 

MRV 4.56625 4.45250B 8.54750W 4.47000n 4.66750 4.67500 5.17125 
B Best one in row; W Worst one in row; n Those not being rejected by 90% Significance Test 

 
Aggregate Results 
 

 Aggregated results are given in Table 4. Overall, it is obvious that the GM is the best method and the NCM 

method is second best. The t-test values of REV indicated that it was never superior or insignificantly different from 

the best on any of the tests. Quite clearly, CGM is the worst method. 

 
7. Conclusion 
 
 Of the various tests, we place more importance on the results with σ=0.1. It stands to reason that the results 

are more reliable when σ is smaller. As well, we suggest more credence be placed upon MSE and MAD as measures 
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of effectiveness. Although MCC has been used in the literature and included here, we think that minimizing error 

from the true priority vector is more important than conforming to the average of some less than perfect methods. 

Similarly, MRV uses a lower order of measurement that loses some sight of accuracy. 

 
Table 4. Aggregated (Averages) Simulated Results 

 Measure REV GM CGM NCM SCM WLS LLAE 
MSE 0.04184 0.03516n 0.08830W 0.03493B 0.05134 0.04665 0.04161 
MAD 1.22389 1.18030B 1.94178W 1.18292 1.26834 1.28102 1.33238 
MCC 0.24645 0.22224B 1.22272W 0.23545 0.39290 0.41261 0.75414 

Average 
Over All 
Replicas 

MRV 2.80250 2.75167B 4.63333W 2.75667n 2.84583 2.86500 3.24958 
MSE 3.25631 0.99695 19.94396 Best 3.31159 10.49257 5.73071 
MAD 7.17861 Best 35.23288 1.50795 7.04747 15.72715 11.38196 
MCC 6.39608 Best 57.84685 8.23490 16.65985 22.26176 43.92424 

t-test 
Value 

Over All 
Replicas MRV 4.14057 Best 31.99002 0.42633 5.54460 6.44717 13.67957 

B Best one in row; W Worst one in row; n Those not being rejected by 90% Significance Test 
 
 We have evaluated seven selected methods for estimating priority values under four well known 

effectiveness measures by a simulated experiment. The simulation results suggest that the GM is the best 

method and NCM is the second best. CGM is the worst method. Although other methods gave close results, they 

were significantly inferior. 

 

 One major advantage of the best methods (GM and NCM) is that they have simple formulas for computing 

the solution vectors. Because of its many desirable properties (Fichtner, 1986), the GM method is quite well known. 

However, the NCM method has not been well recognized. It performed well in this study and has been found to be 

robust (Zahedi, 1986). Thus, the results provide some support for Zahedi’s (1986) recommendation to use it. 

However, GM has performed much better in our simulation and it is also the best method recommended in Lin 

(2007). 

 

 It is rather surprising that although the REV method gave close results and ranked a distant third overall, it 

was significantly inferior to the best method in all tests. Since REV is more mathematically complicated and since it 

did not prove to be superior, the results do not provide support for the recommendation by Saaty & Vargas (1984) 

that REV be the only method to use when data are not entirely consistent. Also, the REV method is not in the four 

best methods recommended in the study by Lin (2007). Furthermore, Blanquero, Carrizosa and Conde (2006) 

showed that the REV method is not efficient in a sense of vector maximization. Practitioners should be cautioned 

when using the REV method popularly used in many commercial AHP software. 

 

 So which method should be used? Golany and Kress (1993) who did not find any one method to be 

superior than all others suggested that the choice of method should be dictated by the desired measure of 

effectiveness. Mathematically, different error measures support different methods. Hence, the defining question is 

not which method is better, but what application or criteria are more valued. We hope that the GM method, the top 

choices here, will receive much more attention in future research and comparative studies.  
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