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Summary : Fuzzy set theory has serious difficulties in producing valid answers in decision-making by 
fuzzifying judgments. No theorems are available about its workability when it is applied indiscriminately as a 
number crunching approach to numerical measurements that represent judgments.  When judgments are 
allowed to vary in choice over the values of a fundamental scale, as in the Analytic Hierarchy Process, these 
judgments are themselves already fuzzy.  To make them fuzzier can make the validity of the outcome, when 
the actual outcome is known, worse, as shown by several examples in this paper. Also, improving the 
consistency of a judgment matrix does not necessarily improve the validity of the outcome.  Validity is the 
goal in decision-making, not consistency, which can be successively improved by manipulating the judgments 
as the answer gets farther and farther from reality.  An example of this is included.   
 
1. Introduction 

 One reason why we use quantitative methods and algorithms to model the world is to help us understand 
it better and more accurately in order to control and change it to our liking.  When our effort to do that 
without inquiring as to why, the modeling effort can become a misguided intellectual exercise to publish 
without concern for the validity of what we are doing. One way to see the fallacy of playing with numbers is 
to illustrate with examples that have known answers.  Fudging the numbers with fuzziness not only increases 
the complexity of manipulations but also robs the original numbers of their elegance and simplicity to 
represent judgments and often leads to less desirable, instead of more desirable outcomes. Some authors have 
done it because, in their words, “it is popular”. 
  There has been some hype in the literature about “improving” some mathematics and in particular 
numbers, through fuzzification. Fuzzy logic is seen as another means for dealing with uncertainty, along with 
the traditional probability theory and statistics. Fuzzy logic is derived from fuzzy set theory which deals with 
approximate rather than precise reasoning as in classical predicate logic. Different from classical set theory, 
fuzzy set theory permits the gradual assessment of the membership of elements in relation to a set, described 
with a membership function μ→ [0, 1].   Fuzzy sets and fuzzy logic have found their theoretical origins and 
applications in electrical engineering.  A list of applications given on the internet includes automobile 
subsystems, such as ABS and cruise control, air conditioners, the massive engine used in the Lord of the 
Rings films, which helped show huge scale armies create random, yet orderly movements, cameras, digital 
image processing, such as edge detection, rice cookers, dishwashers, elevators, washing machines and other 
home appliances, video game artificial intelligence, language filters on message boards and chat rooms for 
filtering out offensive text and others.   
 There have been attempts to apply fuzzy concepts to the social sciences, politics and to decision making 
[see reading list 11-39 in the references at the end of the paper, and there are many more references not cited 
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here].  These by their very nature include judgments under uncertainty that are already fuzzy and may not 
benefit from further fuzzification to improve their depth for better understanding and control.  Yet we know of 
blind efforts to carry fuzzy techniques wherever there are numbers without questioning the validity of the 
practice. All numbers are seen to be amenable to fuzzy logic according to certain procedures.  In particular, it 
has been applied in the field of operations research which unlike mathematics, does not insist on proof when a 
familiar technique is used. Referees of many articles appear to let them through for publication without being 
critical about the validity of the outcome.  
 In a widely circulated and highly controversial paper, Charles Elkan in 1994 [7] commented that "...there 
are few, if any, published reports of expert systems in real-world use that reason about uncertainty using 
fuzzy logic. It appears that the limitations of fuzzy logic have not been detrimental in control applications 
because current fuzzy controllers are far simpler than other knowledge-based systems. In future, the technical 
limitations of fuzzy logic can be expected to become important in practice, and work on fuzzy controllers will 
also encounter several problems of scale already known for other knowledge-based systems". Reactions to 
Elkan's paper are many and varied, from claims that he is simply mistaken, to others who accept that he has 
identified important limitations of fuzzy logic that need to be addressed by system designers. In fact, fuzzy 
logic was not largely used at that time, and today it is used to solve very complex problems in the AI area. 
Probably the scalability and complexity of the fuzzy system will depend more on its implementation than on 
the theory of fuzzy logic.”  
 Our concern here is with the validity of applying fuzzy thinking to decision making. The first author is 
particularly concerned about fuzzifying judgments in the Analytic Hierarchy Process because he is its 
originator. The second author is very knowledgeable about and has done his work in the field of fuzzy sets.  
Our collaboration arose out of our mutual interest in discovering the true value of using fuzziness in making 
decisions. 
 
2. Validity, Truth, Falsifiability and Fuzziness   

         It is known in science as emphasized in the works of the philosopher Karl Popper in the 1930’s that a 
distinction is made between simple existential statements such as: this is a crisp number and therefore it can 
be transformed into a fuzzy number; and universal statements such as: all numbers before they are subjected 
to fuzzy thinking are crisp numbers and therefore all numbers can be transformed to fuzzy numbers.  To avoid 
pitfalls in using universal statements, it is proposed that a counter-example be given to deny the truth of such 
a universal statement.  Our purpose is to show that whatever the claim of making numbers fuzzy may be, 
fuzzification does not necessarily improve the numerical value(s) of a solution in those situations when the 
true value is already known by other means and is being estimated by a numerical process that represents 
judgments of involved participants, whether well or poorly informed.  Using fuzzy numbers in decision 
making is inadvisable until precise conditions are given for when the process works well and when it does 
not.  Unquestioned use of fuzzy numbers is unjustified in practice. That is all we want to show, particularly in 
relation to numbers that are used to represent pairwise comparison judgments subject to uncertainty whose 
numerical representation is already “fuzzy” and not because of uncertainty because even after fuzzification 
the numbers used are still uncertain. There is adequate elaborate mathematical theory to justify the stability of 
the outcome obtained from the numerical judgments without the need to make them fuzzy first and make the 
theory of their stability even more complex. In addition, examples show that the outcome of fuzzification can 
be far from an actual value that is already known for comparisons purposes.  In this regard experts in multi 
attribute value theory who made comparisons of outcomes of decision experiments write [3]:  "These 
experiments demonstrated that the MAVT and AHP techniques, when provided with the same decision 
outcome data, very often identify the same alternatives as 'best'.  The other techniques are noticeably less 
consistent with MAVT, the Fuzzy algorithm being the least consistent." 

                We should note that fuzziness may work better in metric spaces than in order spaces. The topology of 
order used in decision making differs considerably from the idea of closeness in metric topology used in 
engineering and physics.  The alternatives of a decision may be forced to be close by a metric approach that 
ends up losing the right order among them.  This may be one cause of the failure of applying fuzzy concepts 
wholesale to decision and social science problems. 
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               Thus an application may be valid in the sense that it follows the rules prescribed to generate certain kinds 
of numbers, but the outcome may not be true in the sense of its applicability to the real world.  To show that 
the outcome is not true one resorts to examples.   

  In the Analytic Hierarchy Process, the inconsistency of judgments is measured by an index based on the 
principal eigenvalue of the positive reciprocal matrix of judgments.  Procedures are known for improving the 
consistency by identifying the most inconsistent judgment and indicating to what value it should be changed 
to obtain the maximum improvement in inconsistency due to that judgment.  But the judge must consider if it 
is possible to change that particular judgment by very much according to her/his understanding. If the change 
made is inadequate to reduce inconsistency, the second most inconsistent judgment is examined carefully and 
so on.  It may be that none of the judgments can be changed enough to reduce the inconsistence to a tolerable 
level in order to make a decision. In that case more knowledge and understanding are needed and the decision 
must be postponed, particularly if the criterion with respect to which the comparisons are made is very 
important. But one could mechanically and automatically change the judgments without consulting the judge, 
or in a paper up for publication one can do anything one wants to make the inconsistency appear as good as 
one wishes even bringing it down to a value of zero.  Students often try to do that without paying attention to 
whether there is any meaning in what they are doing by changing their judgments. In fuzzy set practice all the 
judgments are changed without a systematic way of checking to find out if the change in judgment is 
acceptable.  Incidentally, one does not need fuzzy sets to do that, there are gradient algorithms that 
accomplish the same purpose. 
 With regard to making changes in judgments, Professor Patrick Harker, now dean of the Wharton School 
has written about fuzziness to the first author: "Beyond the mathematical issues there is a fundamental 
question of human judgment.  No one could possibly think of how to change all of the parameters 
simultaneously; this is simply a mathematical convenience that does not relate at all to human cognition.  
While one might argue that people could think of changing more than one judgment at a time, changing all 

 seems unreasonable.  I really believe that the mathematics should point out inconsistencies and guide 
people, but that people must ultimately make the final call on whether or not the judgments make sense."  

2 / 2n

 What is useful to show now is that improving consistency in the AHP even without applying fuzzy 
concepts does not imply improving the accuracy of the outcome. In fact the example below shows that with 
better consistency the outcome is arithmetically worse.  We then show that with fuzzy, the same thing 
happens.  So it appears that fuzzifying judgments by improving AHP consistency is the wrong thing to do 
unless a theory is carefully developed to state the conditions under which it can be done and when it should 
not be done.  We very much doubt that such conditions are easy to state in the area of decision making. 
 
3.  Paired Comparisons and the Analytic Hierarchy Process 

 The AHP uses pairwise comparisons of a knowledgeable person to determine the importance of criteria in 
a decision.  Because most criteria are intangible, it is also important to compare the alternatives with respect 
to each such criterion.  Even when a criterion is tangible and the alternatives have measurements with respect 
to them, the significance of their values must often (but not necessarily always) be compared using pairwise 
comparison judgments. Judgments in the AHP are entered in a square matrix of the elements on the left side 
of that matrix are compared with the same elements listed in the same order above the matrix.   
 We begin by formulating the condition for a  solution in the ideal case where one has measurements 

 for the n criteri or stimuli A1, A2, … An  in order to become familiar with the structure of the 
problem of pairwise comaprisons. : 
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where A  has been multiplied on the right by the column form of the vector of weights .  
The result of this multiplication is . Thus, to recover the scale from the matrix of ratios, one must solve 
the problem Aw = nw or (A - nI) w = 0 where I is the identity matrix. This is a system of homogeneous linear 
equations.  It has a nonzero solution if and only if the determinant of A-nI, a polynomial of degree n in n (it 
has a highest degree term of the form  and thus by the fundamental theorem of algebra has n roots or 
eigenvalues), is equal to zero, yielding an nth degree equation known as the characteristic equation of A. This 
equation has a solution if n is one of its roots (eigenvalues of A). But A has a very simple structure because 
every row is a constant multiple of the first row (or any other row).  Thus all n eigenvalues of A, except one, 
are equal to zero. The sum of the eigenvalues of a matrix is equal to the sum of its diagonal elements (its 
trace).  In this case the diagonal elements are each equal to one, and thus their sum is equal to n, from which it 
follows that n must be an eigenvalue of A and it is the largest or principal eigenvalue, and we have a nonzero 
solution.  The solution is known to consist of positive entries and is unique to within a multiplicative 
(positive) constant and thus belongs to a ratio scale. We note that in this case our matrix A is consistent: given 
any row or any minimal spanning set of entries that interconnects all the elements, the rest of the matrix can 
be constructed from this set by forming the appropriate ratios. More simply, the matrix satisfies the 
relationship  for all i, j. k. Otherwise the matrix is said to be inconsistent. 
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 When the measurements are not available and judgments are used the matrix takes the positive 
reciprocal form:    
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Although reciprocal with 1/jia = ija  , this matrix need not be consistent. 
 In general we assume that expert judgments are made to estimate the ratios of the entries in the vector w. 
Fundamentaly, the second matrix is assumed to be a small perturbation of the first matrix. There are several 
ways to justify the argument that in order to obtain the vector of priorities from the second matrix we must 
again solve the eigenvalue problem maxAw wλ= . One of the simplest is theorem which says that a small 
perturbation of a matrix yields a matrix whose principal eigenvalue is close to the principal eigenvalue of the 
unperturbed matrix. 
 The numerical judgments use the fundamental scale of absolute numbers (invariant under the identity 
transformation).  From logarithmic stimulus-response theory that we do not go into here, we learn that a 
stimulus compared with itself is always assigned the value 1 so the main diagonal entries of the pairwise 
comparison matrix are all 1. We also learn that we must use integer values for the comparisons. The numbers 
3, 5, 7, and 9 correspond to the verbal judgments “moderately more dominant”, “strongly more dominant”, 
“very strongly more dominant”, and “extremely more dominant” (with 2, 4, 6, and 8 for compromise between 
the previous values).  Reciprocal values are automatically entered in the transpose position. Consistency of 
the set of judgments is measured by the consistency ratio (C.R.), which we explain now. 
 The computation 
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reveals that .max n≥λ   Moreover, since   2/1 ≥+ xx    for all x > 0, with equality if and only  

if x = 1, we see that n=maxλ  if and only if all γij  = 1, which is equivalent to having all aij = wi/ wj. 
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 The foregoing arguments show that a positive reciprocal matrix A has n≥maxλ , with equality if and only if 
A is consistent.  As our measure of deviation of A from consistency, we choose the consistency index 
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We have seen that 0≥μ  and 0=μ  if and only if A is consistent.  These two desirable properties explain the 

term “n” in the numerator of μ ; what about the term “n-1” in the denominator?  Since trace A = n is the sum of 
all the eigenvalues of A, if we denote the eigenvalues of A that are different from maxλ  by 12 ,..., −nλλ , we see 
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the non-principal eigenvalues of A.   
 In order to get some feel for what the consistency index might be telling us about a positive n-by-n 
reciprocal matrix A , consider the following simulation: choose the entries of A  above the main diagonal at 
random from the 17 values {1/9, 1/8,…,1, 2,…,8, 9}.  Then fill in the entries of A  below the diagonal by 
taking reciprocals.  Put ones down the main diagonal and compute the consistency index.  Do this 50,000 
times and take the average, which we call the random index.  Table 1 shows the values obtained from one set 
of such simulations and also their first order differences, for matrices of size 1, 2,…,15. 
 
Table 1 
Random index 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R.I. 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.52 1.54 1.56 1.58 1.59

First Order 
Differences 0.00 0.52 0.37 0.22 0.14 0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01  

 
 Since it would be pointless to try to discern any priority ranking from a set of random comparison 
judgments, we should probably be uncomfortable about proceeding unless the consistency index of a pairwise 
comparison matrix is very much smaller than the corresponding random index value in Table 1.  The 
consistency ratio (C.R.) of a pairwise comparison matrix is the ratio of its consistency index : to the 
corresponding random index value in Table 1.  
 Fig. 1 below is a plot of the first two rows of Table 1. It shows the asymptotic nature of random 

inconsistency.  
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Fig. 1. Plot of Random Inconsistency 

 Since it would be pointless to try to discern any priority ranking from a set of random comparison 
judgments, we should probably be uncomfortable about proceeding unless the consistency index of a pairwise 
comparison matrix is very much smaller than the corresponding random index value in Table 1.  The 
consistency ratio (C.R.) of a pairwise comparison matrix is the ratio of its consistency index : to the 
corresponding random index value in Table 1.  The notion of order of magnitude is essential in any 
mathematical consideration of changes in measurement. When one has a numerical value say between 1 and 
10 for some measurement and one wishes to determine whether change in this value is significant or not, one 
reasons as follows: A change of a whole integer value is critical because it changes the magnitude and identity 
of the original number significantly. If the change or perturbation in value is of the order of a percent or less, 
it would be so small (by two orders of magnitude) and would be considered negligible. However if this 
perturbation is a decimal (one order of magnitude smaller) we are likely to pay attention to modify the 
original value by this decimal without losing the significance and identity of the original number as we first 
understood it to be. Thus in synthesizing near consistent judgment values, changes that are too large can cause 
dramatic change in our understanding, and values that are too small cause no change in our understanding.  
We are left with only values of one order of magnitude smaller that we can deal with incrementally to change 
our understanding. It follows that our allowable consistency ratio should be not more than about .10. The 
requirement of 10% cannot be made smaller such as 1% or .1% without trivializing the impact of 
inconsistency. But inconsistency itself is important because without it, new knowledge that changes 
preference cannot be admitted. Assuming that all knowledge should be consistent contradicts experience that 
requires continued revision of understanding.   
 If the  is larger than desired, we do three things: 1) Find the most inconsistent judgment in the 
matrix (for example, that judgment for which 

. .C R
ij ij j ia w wε = is largest), 2) Determine the range of values to 

which that judgment can be changed corresponding to which the inconsistency would be improved, 3) Ask the 
judge to consider, if he can, change his judgment to a plausible value in that range.  If he is unwilling, we try 
with the second most inconsistent judgment and so on.  If no judgment is changed the decision is postponed 
until better understanding of the stimuli is obtained.  Judges who understand the theory are always willing to 
revise their judgments often not the full value but partially and then examine the second most inconsistent 
judgment and so on.  It can happen that a judges knowledge does not permit one to improve his or her 
consistency and more information is required to improve the consistency of judgments. 
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 When we speak of perturbation, we have in mind numerical change from consistent ratios obtained from 
priorities. The larger the inconsistency and hence also the larger the perturbations in priorities, the greater is 
our sensitivity to make changes in the numerical values assigned.  Conversely, the smaller the inconsistency, 
the more difficult it is for us to know where the best changes should be made to produce not only better 
consistency but also better validity of the outcome.  Once near consistency is attained, it becomes uncertain 
which coefficients should be perturbed by small amounts to transform a near consistent matrix to a consistent 
one. If such perturbations were forced, they could be arbitrary and thus distort the validity of the derived 
priority vector in representing the underlying decision.  
 The third row of Table 1 gives the differences between successive numbers in the second row. Figure 2 is 
a plot of these differences and shows the importance of the number seven as a cutoff point beyond which the 
differences are less than 0.10 where we are not sufficiently sensitive to make accurate changes in judgment on 
several elements simultaneously. 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of elements compared

R
an

do
m

 in
co

ns
is

te
nc

y 
di

ff
er

en
ce

s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of elements compared

R
an

do
m

 in
co

ns
is

te
nc

y 
di

ff
er

en
ce

s

 
Fig. 2. Plot of First Differences in Random Inconsistency 

 
4.  Improving Inconsistency need not improve the Validity of the Outcome 

 Here is an example where being inconsistent is more accurate because one is within the range of the 
scale.  Assume that the actual values are 12, 6, 1.33, 1, or in normalized form approximately: .590, .295, .066, 
.049. The judgment matrix of pairwise comparisons of the actual values in the order they are given is 
presented in Table 2.  A consistent matrix ( max ,  ij jk ikn or a a aλ = = ) of judgments within the 1-9 Scale is 

shown in Table 3. 
 

Table 2   
Consistent matrix of comparisons of the ratios of the numbers 12, 6, 1.33, 1 
 

12 6 1.33 1 PRIORITIES 
12 1 2 9 12 0.590 
6 0.500 1 4.5 6 0.295 

1.33 0.111 0.222 1 1.33 0.066 
1 0.083 0.167 0.75 

 
1 0.049 

 
Table 3  
Consistent matrix ( max ,  ij jk ikn or a a aλ = = ) of judgments within the 1-9 Scale 
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Number 12 6 1.33 1 PRIORITIES 

12 1 2 9 9 0.581 
6 0.500 1 4.5 4.5 0.290 

1.33 0.111 0.222 1 1 0.065 
1 0.111 0.222 1 

 
1 0.065 

 
This matrix is perfectly consistent (check this by forming the ratios /ik ij jka a a= ), but gives only 

approximate values for the priorities. Table 4 presents the inconsistent matrix ( max nλ >  ) of judgments 
within the 1-9 scale. 
 
Table 4  
Inconsistent Matrix ( max nλ > ) of Judgments within the 1-9 Scale. 
 

Number 12 6 1.33 1 PRIORITIES 
12 1 3 9 8 0.590 
6 0.333 1 6 6.75 0.295 

1.33 0.111 0.148 1 2 0.066 
1 0.125 0.167 0.5 

 
1 0.049 

 
This matrix gives the identical priorities to within three decimals, though it is not consistent. Thus, at least in 
this example, consistency does not ensure validity and inconsistency can yield more valid results. This implies 
that improving consistency cannot be relied on to improve validity and can be misleading particularly when 
fuzziness is used on judgments that are already within the tolerable range of inconsistency.  In fuzzy what 
people do is improve consistency regardless of the consequences. 
 
 Stability of the principal eigenvector also imposes a limit on channel capacity and also highlights the 
importance of homogeneity.  To a first order approximation, perturbation Δw1 in the principal right 
eigenvector w1 due to a perturbation ΔA in the matrix A where A is consistent is given by Wilkinson [9]:    

1 1( ( )
n

T
j i j i

j=2

w  = v  Aw / -  v w wλ λΔ Δ∑ )T
j j                                                                                

Here T indicates transposition. The eigenvector w1 is insensitive to perturbation in A, if 1) the number of terms 
n is small, 2) if the principal eigenvalue λ1 is separated from the other eigenvalues jλ , here assumed to be 
distinct (otherwise a slightly more complicated argument given below can be made) and, 3) if none of the 
products vj

T wj of left and right eigenvectors is small but if one of them is small, they are all small.  However, 
v1

T w1, the product of the normalized left and right principal eigenvectors of a consistent matrix is equal to n 
that as an integer is never very small.  If n is relatively small and the elements being compared are 
homogeneous, none of the components of w1 is arbitrarily small and correspondingly, none of the components 
of v1

T is arbitrarily small.  Their product cannot be arbitrarily small, and thus w is insensitive to small 
perturbations of the consistent matrix A. The conclusion is that n must be small, and one must compare 
homogeneous elements.   
 When the eigenvalues have greater multiplicity than one, the corresponding left and right eigenvectors 
will not be unique. In that case the cosine of the angle between them which is given by  corresponds to 

a particular choice of  and .  Even when and correspond to a simple 

T
i iv w

iw iv iw iv iλ they are arbitrary to 
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within a multiplicative complex constant of unit modulus, but in that case | vi
T wi| is fully determined. Because 

both vectors are normalized, we always have | vi
T wi | <1. 

 
5. Fuzzy AHP Guarantees nothing and can Foul Up the Outcome of a Decision 

    We now illustrate with examples in the AHP whose numerical answers are known 
which on fuzzifying do not yield better answers, so why bother. Uncertainty in the AHP is successfully 
remedied by using intermediate values in the 1-9 scale combined with the verbal scale and that seems to work 
better to obtain accurate results than using fuzziness to change the numbers for convenience and rather 
arbitrarily. 
 Fuzzy set theory has been introduced by fuzzy neophytes into AHP mainly to deal with uncertainty 
associated with pairwise comparison judgments. Since their only justification to use fuzziness is the claim of 
uncertainty they work hard to apply their technique and publish a paper by arguing that a user might have 
different confidence levels on different (pairwise comparison) judgments due to various reasons, incomplete 
information, variation of data, dynamics of the problem under study and so on. But they never ask a user 
about how certain he is nor whether changing the 1-9 scale value up or down to match the user’s confidence 
improves the validity of the outcome. There is no mathematical proof that making the judgments fuzzy can be 
depended on to improve the practical validity of the results. Fuzzy thinking advocates have determined that 
the judgments are always crisp numbers, whatever that may mean in metric topology so they can play with 
them to make them fuzzy. To justify their manipulations, they say that interval or fuzzy numbers might be an 
alternative.  Interval is suitable when no reference is given to any value on the possible range.  In contrast, it is 
thought that fuzzy numbers are appropriate when some values are preferred to others in the possible range. 
Note that, if all of the judgments are at the same confidence level and can be represented by crisp numbers, 
there is no point to using interval or fuzzy numbers. The point is to use fuzzy numbers as a suitable tool to 
represent uncertain judgments, rather than to “fuzzify” certain and crisp judgments. Of course we know from 
various publications that people blindly use fuzzy numbers in their work without verifying the uncertainty and 
that may be one reason why they are unable to ensure the validity of the fuzzy outcome. 
 There are many different ways to construct fuzzy numbers from raw information (see [2,4,5,6,8,10] for 
more details on fuzzy numbers and their construction).  One wonders if more than one of these methods can 
be applied to the same problem they lead to the same outcome. It is very likely they do not, and then what?   
 A simple way is to construct a triangle fuzzy number for a judgment is by using its most possible value 
and its possible range (i.e., its minimum and maximum values).  To illustrate, assume the most possible, 
minimum, and maximum values of a judgment in comparing A and B are 8, 6, and 9, respectively.  Then the 
judgment can be represented by the triangular fuzzy number (6, 8, 9) in Figure 3. If more information is given, 
other types of fuzzy numbers (e.g., nonlinear fuzzy membership functions) can be constructed to best describe 
the situation. 
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Fig. 3. Fuzzy triangle number (6, 8, 9)T. 

 
 
Finding the eigenvector/eigenvalue in the case of fuzzy judgments 
 When there is one or more fuzzy judgments in the model, there is an infinite set of eigenvector/ 
eigenvalue outputs.  The problem turns out to be one of finding the “best” (maximum) eigenvalue in a multi-
objective setting: small inconsistency index (<0.1), high fuzzy membership values (i.e., the closer the chosen 
judgments to the most possible values are, the better the result is).  There are several different ways to set up 
such multi-objective optimization problems, such as: 

 Minimize the maximum eigenvalue (i.e., minimize the inconsistency index) while setting constraints on 
fuzzy membership values (e.g., acceptable value(s) > 0.5). 

 Maximize fuzzy membership values while setting constraint on the inconsistency index (e.g., <0.1). 
 Run simulation to determine the entire range of maximum eigenvalues according to all possible judgment 

values at various fuzzy membership values, then ask the user to make a decision. 
In this paper the third method is used. 
 
6.  Examples 

 We learn three things from the examples shown below: 
 When the original judgments are good, by Wilkinson’s theorem, small perturbations of them are close 

and some components of the derived vector may be a little better, other components a little worse. 
There is no gain in fuzzifying the matrix.  

 If the judgments are partly good partly bad in the sense that they are somewhat far from the ratio’s of the 
actual answer, fuzzifying the matrix does not improve the closeness of the vector to the actual value.   

 When the judgments are poor both in capturing the cardinal ratios and reverse ordinal rank, fuzzifying 
can make the values of some components even farther away from the actual values.   

 The conclusion is, as we said in the opening discussion, one should never use fuzzy arithmetic on AHP 
judgment matrices.  We await some convincing theory with proofs what one should apply a process that we 
are convinced with numerous counter-examples is shown to give untrustworthy answers in decision making. 
It appears that the observations made by Buede and Maxwell [1] are fully justified. 
 
An Example where good judgments already give good outcomes and fuzzy methods do not improve it and 
can make it worse for some alternatives: Relative Consumption of Drinks in the United States. 
 Table 5 shows how an audience of about 30 people, using consensus (instead of the geometric mean to 
combine judgments in the AHP) to arrive at each judgment, provided judgments to estimate the dominance of 
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the consumption of drinks in the United States (which drink is consumed more in the US and how much more 
than another drink?).  The derived vector of relative consumption and the actual vector, obtained by 
normalizing the consumption given in official statistical data sources, are at the bottom of the Table 5.  Note 
that for several of the drinks the fuzzy outcome is not as close to the actual value as is the AHP eigenvector. 
 
Table 5  
Which drink is consumed more in the U.S.?  
 

An Example of Estimation Using Judgments

Coffee Wine Tea Beer Sodas Milk Water

Drink
Consumption
in the U.S.

Coffee

Wine

Tea

Beer

Sodas

Milk

Water

1

1/9

1/5

1/2

1

1

2

9

1

2

9

9

9

9

5

1/3

1

3

4

3

9

2

1/9

1/3

1

2

1

3

1

1/9

1/4

1/2

1

1/2

2

1

1/9

1/3

1
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1/2

1/9

1/9

1/3

1/2

1/3

1

The derived scale based on the judgments in the matrix is:
Coffee Wine Tea Beer Sodas Milk Water
.177 .019 .042 .116 .190 .129 .327
with a consistency ratio of .022.
The fuzzy outcome obtained from the matrix below is:
.198         .016         .033         .107         .165        .123         .358
with a consistency ratio of .017 
The actual consumption (from statistical sources) is:
.180 .010 .040 .120 .180 .140 .330

An Example of Estimation Using Judgments

Coffee Wine Tea Beer Sodas Milk Water

Drink
Consumption
in the U.S.
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9
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2
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1/3

1

2

1

3
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1/2
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The derived scale based on the judgments in the matrix is:
Coffee Wine Tea Beer Sodas Milk Water
.177 .019 .042 .116 .190 .129 .327
with a consistency ratio of .022.
The fuzzy outcome obtained from the matrix below is:
.198         .016         .033         .107         .165        .123         .358
with a consistency ratio of .017 
The actual consumption (from statistical sources) is:
.180 .010 .040 .120 .180 .140 .330  

 Those who did the example did not know the answers at all until the results confirmed their judgments. 
 The fuzzy algorithm found the best results with the following inputs shown in Table 6. 
 
Table 6 
Inputs that provide the best results with the fuzzy algorithm for the drink example 
 

 Coffee  Wine  Tea  Beer  Sodas  Milk  Water  
Coffee  1.000 10.501 5.179 2.430 1.473 1.486 0.514 
Wine  0.100 1.000 0.500 0.167 0.099 0.111 0.036 
Tea  0.200 2.043 1.000 0.277 0.257 0.263 0.073 
Beer  0.400 5.636 3.600 1.000 0.500 1.000 0.400 
Sodas  0.700 10.053 3.889 1.875 1.000 1.792 0.465 
Milk  0.700 9.000 3.800 1.000 0.556 1.000 0.427 
Water  1.900 27.824 13.708 2.407 2.152 2.386 1.000 

 
A similar Outcome with a second Example: Relative Amount of Protein in Seven Foods. 
 Table 7 shows pairwise comparisons of seven foods with respect to their protein content. The question is 
which food has more protein. Because the AHP combines the objective problem of measurement with the 
subjective problem of meaning, it uses a scientifically justifiable process of combining group judgments to 
give greater objectivity to its findings even by using priorities for the judges themselves to raise their 
judgments to that power of importance. In this example and in several others below group judgments were 
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combined using the geometric mean but without weighting the judges. This avoids the  issue that the AHP 
outcome somehow approximates to the fuzziness that may be associated with the many outcomes of the 
different judges treated as statistics. 
 
Table 7  
Which food has more protein? 

A B C D E F G
Protein in Food

A: Steak

B: Potatoes

C: Apples

D: Soybean

E: Whole Wheat Bread 

F: Tasty Cake

G: Fish

1 9

1

9

1

1

6

1/2

1/3

1

4

1/4

1/3

1/2

1

5

1/3

1/5

1

3

1

1

1/4

1/9

1/6

1/3

1/5

1
The derived scale and actual values are:
Steak Potatoes Apples Soybean W. Bread T. Cake Fish
.345 .031 .030 .065 .124 .078 .328
with a consistency ratio of .028. The fuzzy outcome obtained from the matrix below is;
.297         .038         .025         .087         .147        .081         .324
With inconsistency ratio of .018. The actual values are:    
.370 .040 .000 .070 .110 .090 .320
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1/6

1/4

1/5

1

1

2

4

3

8

3

3 2

5

9

2

1

1/3

3 5

 
 
The apple should not be included in the comparisons in any case because it has no protein. 
The fuzzy algorithm found the best results with the following inputs shown in Table 8. 
 
Table 8  
Inputs that provide the best results with the fuzzy algorithm for the protein example. 

 A B C D E F G 
A: Steak 1.000 7.601 9.729 3.754 1.955 4.022 1.047 
B: Potatoes 0.100 1.000 1.250 0.500 0.333 0.375 0.143 
C: Apples 0.100 0.802 1.000 0.248 0.131 0.418 0.053 
D: Soybean 0.300 2.117 4.000 1.000 0.500 1.000 0.375 
E: Whole 
Wheat 
Bread  

0.500 2.979 7.667 1.855 1.000 1.922 0.379 

F: Tasty 
Cake 

0.200 2.714 2.400 1.000 0.500 1.000 0.250 

G: Fish 1.000 7.453 19.022 2.710 2.642 3.851 1.000 
 
Example of Poor Outcome with Poor Judgments: Relative sizes of Areas 
 Fig. 4 shows five areas. The object is to compare them in pairs to reproduce their relative weights.  The 
reader can apply the paired comparison process using the 1-9 scale and find its principal eigenvector and 
compute the compatibility index with the actual values given below to test the validity of the procedure.     
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Fig. 4. Five Geometric Shapes 
 
The inputs shown in Table 9 indicate that answers from poor judgments are not improved by fuzzy 

thinking.   
 
 
 
 
 
 

Table 9 
Judgments, outcomes, and actual relative sizes of the five geometric shapes. 

Figure Circle Triangle Square Diamond Rectan
gle 

Eigen 
Vector 
Inc .631 

Fuzzy 
vector 
Inc 
 .467,    
.361 

Actual 
Relative 
Size 

Circle 1 12 2/3 5 12 .482 .495,   
.532 

.471 

Triangle 1/12 1 1/6 3 3/2 .085 .107,   
.099 

.050 

Square 3/2 6 1 2/3 1/4 .196 .196,    
.168 

.234 

Diamond 1/5 1/3 3/2 1 2 .101 .095,    
.093 

.149 

Rectangle 1/12 2/3 4 1/2 1 .136 .106,    
.108 

.096 

 
 Fuzzy inputs for the first person’s comparisons had two runs with two outcomes. Table 10 presents the 
fuzzy matrix for the first run.  
 
Table 10  
Fuzzy matrix for the first run of the five-geometric shapes example. 

 Circle Triangle Square Diamond Rectangle 
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Circle 1 A=(11, 12, 
13) 

B=(0.001, 0.667, 
1.167) 

C=(4.5, 5, 5.5) D=(11.5, 12, 12.5) 

Triangle 1/A 1 E=(0.001, 0.167, 
1.167) 

F=(2.5, 3, 3.5) G=(1.0, 1.5, 2.0) 

Square 1/B 1/E 1 H=(0.167, 0.667, 
1.167) 

I=(0.001, 0.25, 0.75) 

Diamond 1/C 1/F 1/H 1 J=(0.001, 0.5, 1.0) 
Rectangle 1/D 1/G 1/I 1/J 1 

 
The fuzzy algorithm found the best results for the first run with the inputs presented in Table 11. 
 
Table 11  
Inputs that provide the best results with the fuzzy algorithm for the first run of the five-geometric shape 
example. 

 Circle Triangle Square Diamond Rectangle 
Circle 1.000 11.489 1.337 4.915 11.557 
Triangle 0.087 1.000 0.519 2.626 1.038 
Square 0.748 1.927 1.000 1.122 0.679 
Diamond 0.204 0.381 0.891 1.000 0.771 

Rectangle 0.086 0.963 1.472 1.297 1.000 
 
Table 12 presents the fuzzy matrix for the second run. 
 
 
 
 
Table 12  
Fuzzy matrix for the second run of the five-geometric shape example 

 Circle Triangle Square Diamond Rectangle 
Circle 1 A=(9, 10, 

11) 
B=(0.667, 1.167, 

2.667) 
C=(4.0, 5.0, 6.0) D=(10.0, 11.0, 12.0) 

Triangle 1/A 1 E=(0.001, 0.8, 1.8) F=(1.5, 2.5, 3.5) G=(0.5, 1.5, 2.5) 
Square 1/B 1/E 1 H=(0.5, 1.5, 2.5) I=(0.001, 0.75, 1.75) 
Diamond 1/C 1/F 1/H 1 J=(0.001, 1.0, 2.0) 
Rectangle 1/D 1/G 1/I 1/J 1 

 
The fuzzy algorithm found the best results for the second run with the inputs presented in Table 13. 
 
Table 13  
Inputs that provide the best results with the fuzzy algorithm for the second run of the five-geometric shape 
example. 

 Circle Triangle Square Diamond Rectangle 
Circle 1.000 9.238 2.625 5.617 10.056 

Triangle 0.108 1.000 0.670 2.408 1.230 
Square 0.381 1.491 1.000 1.833 1.442 

Diamond 0.178 0.415 0.546 1.000 0.984 
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Rectangle 0.099 0.813 0.694 1.012 1.000 
 
 As previously mentioned, there is one line of argument somewhere that fuzzy numbers are justified as 
they provide a valid way to aggregate judgments from a group of experts in the AHP.  Note that the AHP has 
a formal way of combining group judgments and talks about spreading fuzziness.  Aczel and Saaty [1] proved 
a theorem that group judgments can be synthesized suitably with the geometric mean.  So far there has been 
no work proving that aggregating group judgments with fuzzy numbers provides better results than those in 
[1]. 
 
6.  Conclusions 

 A judge, whether certain or uncertain of the accuracy of his/her judgments may be totally uninformed and 
ignorant. In that case there is no way to capture reality through his judgments. No fuzzifying can make his 
judgments more valid in practice.  They could make them even less accurate. If the judge is well informed, the 
AHP has been demonstrated to obtain valid results from his/her judgments and perturbation theory shows that 
changing the numbers to cope with uncertainty would not change the answers substantially nor would they 
direct them towards the actual answer when that answer is known.  Fuzzy set practitioners have been leading 
a parasitic existence (a parasite according to Webster’s dictionary is one depending on another and not 
making adequate return- “we might add most of the time”) by looking at all numbers as if they are subject to 
uncertainty and fuzzifying them purportedly to improve consistency without either giving good reasons for 
doing it because we know that good consistency does not imply greater validity, or proving that the results 
thus obtained are more valid than is obtained directly from the judgments.   
 In sum, we note that making poor judgments leads to poor outcomes and fuzzifying poor judgments still 
leads to poor outcomes.  Making good judgments gives good (valid) answers with the AHP and fuzzifying 
these judgments is simply a perturbation that leaves the results where they are without producing uniformly 
better outcomes. Good judgments that are inconsistent can give better outcomes than consistent ones, thus 
fuzzifying these inconsistent judgments can lead to worse rather than better outcomes.  The minimum one 
would expect is more valid outcomes which we have shown through examples are not obtained. For greater 
validity of a decision with the AHP, is there evidence that it is better to fuzzify the judgments? The answer is 
an unqualified no.  It is not advisable to use fuzzy numbers.  Proofs are needed to invalidate our conclusion 
that fuzzy thinking is an artifice that should not be used at all in the AHP. 
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	Summary : Fuzzy set theory has serious difficulties in producing valid answers in decision-making by fuzzifying judgments. No theorems are available about its workability when it is applied indiscriminately as a number crunching approach to numerical measurements that represent judgments.  When judgments are allowed to vary in choice over the values of a fundamental scale, as in the Analytic Hierarchy Process, these judgments are themselves already fuzzy.  To make them fuzzier can make the validity of the outcome, when the actual outcome is known, worse, as shown by several examples in this paper. Also, improving the consistency of a judgment matrix does not necessarily improve the validity of the outcome.  Validity is the goal in decision-making, not consistency, which can be successively improved by manipulating the judgments as the answer gets farther and farther from reality.  An example of this is included.  
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